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We give the proofs of the remaining results given in the main manuscript that were not considered in Section
10 of Balabdaoui, Groeneboom and Hendrickx (2017) together with additional technical lemmas needed for
proving our main results.

1. Supplement A: Asymptotic normality of the efficient score estimator

In this section we prove (iii) of Theorem 5.1 on the asymptotic normality of the efficient score estimator
&,,. The proofs of existence and consistency of &, given in (z) and (4¢) of Theorem 5.1 follow the same lines
as the corresponding proofs for the simple score estimator &, given in Sections 10.2.1 and 10.2.1 and are
omitted.

Proof of asymptotic normality: Let 7; denote the sequence of jump points of the monotone LSE Vna.
We introduce the piecewise constant function p, g defined for u € [r;, Ti41) as

E[X|S(8)TX = 7]yl (r) if 1o (1) > Yna(ri) for all u € (75, 7i1),
Pnp(u) =4 E[X[S(B)TX = s|yL(s) if Y (5) = tna(s) for some s € (75, 7541),
E[X|S(ﬁ)TX = Ti+1}’l/1;(7'7;+1) if 'l/)a(u) < wna(n) for all u € (Ti77’1‘+1).

We can write,

fnh(@n)

= Ba)" [ {@0in,0 (8(5)72) ~ B (XIS(5.) ") v, (S(3)7) } {u~ bua, (5(5.)2) } du(a,y)
+ 2B [ {B(XI8(3.)"2) i, (8(6:)7) -, 5, (6617 )} {u~ bus, (8(Bn)" ) } dPa(a)
=J+JJ (1.1)

using,

[ 205, (8672) {y~ e, (5(5)"2) } dP(a.v) = 0.
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The term JJ can be written as
17 = 358" [ {(XI8(3)"2) vi, (66.)7) -7, 5, (5(6,)7) )
Ay =Yna, (5B)72) | (o = Po)(a.y)
+ 2B [ {B(X18(3.)"2) vi, (816,07 ) - 5, 5, (86,)7 )}
{v—va, (83)72) } dPy(a,y)
+ To(B)" [ {B (XI55 2) v, (S(B)T) =, 5, (S(50)) }
Ava, (8B1)72) = tna, (SB1)T2) } dPo ()
= JJu+ JJy+ JJe, (1.2)

We first note that by Assumption A10, the functions u +— 9, (u) := ¢é(ﬂ) (u) are uniformly bounded and
have a total variation that is uniformly bounded for all 3 € C. This also implies, using Lemma 3.4, that the
functions u — E (X;|S(8)T X = u) ¢, (u) have a bounded variation for all 3 € C. Using the same arguments
as those for term I, defined in (10.26) in the proof of Theorem 4.1, it easily follows that,

JJo = 0,(n"1/?).
We next consider the term J.Jp. By Lemma 3.6 we know that ¢, stays away from zero for all S(8) in a

neighborhood of S(Bp). Using the same techniques as in Groeneboom and Jongbloed (2014), we can find a
constant K > 0 such that for alli=1,...,d and u € Z,

B (X:IS(8)7 X = u) ¥y (1) = Puip(w)] < K |Ya(w) = dna(u)] (1.3)

where pp; g denotes the ith component of p,, g. This implies that the difference E (X;[S(8)7 X = u) ¢, (u) —

[e 2
Pnip(u) converges to zero for all u € Z,. Using Lemma 3.1 and a Taylor expansion of 8 +— o (S(,B)T:c) we
get,

Yo (S(8) @) = o (S(Bo) ) + (B — Bo)" [Js(Bo)” (x — E(XIS(Bo)" X =S(Bo)" x)) 15 (S(Bo) )]
+o(B - Bo), (1.4)

such that
T = JsBa)" [ {E(XI5(5.)" @) v, (8(5.)"2) - 5, 5, (5(5.)")}
Ao (5(80)72) — va, (SB.)7) } dPo(@,y) =0, (B — o)

For the therm JJ., we get by an application of the Cauchy-Schwarz inequality together with the uniform
boundedness of Js, Proposition 3.2 and (1.3) that,
) 1/2
JJ. < J(Ba)" ( [{E(x56.)72) b4, (8(3.)7) 7, 5, (55,7} dPo(fI%y))
, 1/2
| ({w&n (5B @) = tua, (S(B)"=) } dPo<m,y>>

N / {%n (6l z) — Vs, (64591;)}2 dG(x) = O, ((1ogn)2n*2/3) — 0, (n"V/2).
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We conclude that (1.1) can be written as
Enn(Bn)
= J:(6)" [ {20, (56.)2) ~ B (XI(B)"2) v, (8(5.)"2)}
Ay = dna, (SB0)"2) } dPu(e,y)
+0p (Y2 4 (B — Bo))

= JS(BH)T/{m?/Xm,dn (S(Bn)Tm) —E (X|S(Bn)T‘B) :in (S(Bn)Tm>}

358" [ {oiina, (506.)72) - & (XI8(.)") v (sw yz) )
Ava, (5(B.)"@) = bua, (S(Bn)"2) } d(Pr — Fo)(2,y)
+ BB [ {2l (560)7e) - B (XI8(6.)72) v, (S(B)Tw) }
e (86,07 2) s, (S(8)72) } dP(.)
top (n2 4 (B — o)
=Jo+Jp+ Je+o0p (n*W + (B — ,60)) : (1.5)

We first consider the term J,. By Assumption A10, Lemma 3.4 and Lemma 3.7 we get that the functions
u— E(X[S(B) Tz =u) ¢y (u) and u o &, (u) have a uniformly bounded total variation for all 3 € C.
Using similar arguments as for the term I, defined in (10.28) we get for A > 0 and v > 0 that

P(|Jy| > An~1/2) <,

for n large enough and we conclude that J, = op(n’l/z). For the term J,. we get,

Je=JeBo)" [ {w~ B (XI8(6.)"2) } Fina, (5(6)7)
{%n (8(B1)7@) ~thna, (S(B)T2) } dPo(a.y)
438" [ {Gina, (83)72) - vi, (56.)"2) 8 (XISﬁ)T:c)
{ (887 2) —tna, (88.)"2) } dPs(@,y)
= Ba)" [ (B (8(8.)72) - v%, (8(5)72) }E (XISB /"z)
{va, (5B) ) ~ tna, (SB.) @)} dPy(w,y)

Furthermore, let Hg be the distribution function of the random variable S(3)” X and let E(X |u) denote the
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conditional expectation of X given S(8)TX = u, then
[ s @ ~ v, @} B {va, ()~ bus, ()} dH5, (@)
= [ {3 [ 5 Q=) e, 0) = v, ) B X0 {00 = s, (0} it (0
~ [ (G [ 5 = o0 (s, (0) = v )} o) £ (Xlud {, () =, ()} s, (0
s [ (G 5 Q=m0 do - v, @) E KT {va. (1) ~ b, (0} a5, (0

The last term on the right hand side is O, (n=2/77%/3) = o, (n~%/2). This follows by an application of the
Cauchy-Schwarz inequality since

2 1/2
{/ (;L /K({u —v}/h) Yy, (v)dv— Py (u)) dHén(“)} -0, (n—w) ,
and
R 2 1/2
{ / (o (W) = e, () A, (u)} =0, (%),
The first term on the right hand side is O, (n1/7_2/3) = 0, (n—1/2) using that for small h
1 n ~
/ (hQ/K/ ({u—v}/h) {%dn (v) —Ya, (U)} d“) E (X[u) {¢dn (u) = ¥na, (u)} dHpg, (u)
1 N 2
N E/ (7/15% (u) — VYna, (u)) dHg (u),
We conclude that (1.5) can be written as,

Eun(Bn) = Te(B)” [ {2l (5(50)7e) ~ B (XIS(6.)") v, (S(Bn)Tw) )

= 5B.)" [ @ {Tna, (8B.)7) - v%, (83)72) } {u - va, (8(3.)72) } d(B, - (@)
+ 2e(B)" [ @ (T, (86)72) v, (86.72) } {u - va, (8(6.)72) } dPr(@.y)

+op (”71/2 + (B — ﬁo))
= JJJy+ I Ty + JJ e+ JJJa+ 0p (n—1/2 + (B — Bo)) (1.6)

We consider JJJ, first and note that by Assumption A10 and Lemma 3.7, the functions ¢/, and 1;’ have

nh,a
a uniformly bounded total variation. By an application of Lemma 3.5 we can write the difference ¢/, ., —¥%
as the difference of two monotone functions, say fi, fo € Mg, for some constant Cy > 0. This implies that

the class of functions
‘Fl = {f($,y) = {i;h,a (S(IB)Tm) - w/a (S(/@)T:B)}{y - Z/}a (S(B)Tm)}7 (w7y7/6) € X xR x C)}
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is contained in the class Hpc,, where v < h™'lognn~='/3 (See the proof of Lemma 3.7). By Lemma 2.4
and the fact that the order bracketing entropy of a class does not get altered after multiplication with the
fixed and bounded function x — x; we get that the class of functions involved with the term JJJ,, say F,
satisfies

HB<€a~Fa7 || ' HB,PO) 5 and ||fHB,PU g v

a | =

Using again an application of Markov’s inequality, together with Lemma 3.4.3 of van der Vaart and Wellner
(1996) we conclude that for A > 0

P(|JJJ,| > An~?) < ot/2 = p=12(log n) Y/ 2n~1/0
which can be made arbitrarily small for n large enough and h =< n~/7. We conclude that
JJJ, = op(n~1/?)
Using similar arguments as for the term JJ, defined in (1.2) we also get,
J Iy =0, (B = Bo)

The result of Theorem 5.1 follows by noting that, using the same techniques as for the term I, in (10.31),
we get

JJJ. = (Js(Bo)) /{az— (X1S(Bo) ) } v (S(Bo) ) {y — vo (S(Bo) x) } d(P,, — Po)(,y)
+0,(n71%) + 0,(Bn — Bo)

and that by a Taylor expansion of 8 — ¥ (S(8)"x) we get,

JJJd{(JS(ﬁo))T</(1/)0( )) Az —E(X[S(Bo)"z)} {z — E (X|S(Bo)" )} dPO:cy)>

X JS(ﬁO)}(Bn — Bo) + 0p(Bn — Bo)

The rest of the proof follows the same line as the proof of asymptotic normality of the simple score estimator
defined in Theorem 4.1 and is omitted.

2. Supplement B: Entropy results

Lemma 2.1. Fiz € > 0, and consider F1 a class of functions defined on X x R bounded by some constant
A > 0 and equipped by the Lo norm || - || p, with respect to Py. Also, let Fa be another class of continuous

functions defined on a bounded set C C R~ such that Fy is equipped by the supremum norm || - ||so, and
bounded by some constant B > 0. Moreover assume that Hg(e, F1, || - ||p,) < 0o and Hg(e, Fa, || - ||oo) < 00.
Consider

F= fl-FQ == {f(m) = fﬁ(m7y) = f1($,y)f2(,3) : (way7ﬁ) € X xR x C}
Then there exists some constant B > 0 such that

HB(Eﬂ]:7 ” : HPo) < HB(Bevflv H ’ ||Po) + HB(Bev‘F27 H : ”00)

Proof. Let f = f1fy € F for some pair (f1, f2) € F1 X Fa. For € > 0 consider the (f&, fV) and (fF, f¥)
e-brackets with respect to || - ||p, for f1 and f5. Note that since F; and F» are bounded by M = max(A, B)
we can always assume that —M < fL' < fV < M for i € {1,2}. As we deal with a product of two functions,
construction of a bracket for f requires considering different sign cases for a given pair (x, 3):
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1. 0 < fi(z) and 0 < fF(B),

2. 0 < fi(z), f2(B) <0 and f(B8) >0,

3. (@) <0, fI(x) > 0and 0 < f£(B),

4. fY(=) <0, fL(B) >0,

5. fL(z) >0, fY(B) >0,

6. fE(x) <0, fY(x) >0, f(B) <0and f(8) >0,
7. fE(®) <0, fY(x) > 0 and f§(8) <0,

8. fY(x) <0, fE(B) <0and fY(B) >0,

9. fV(x) <0and fY(B) <0.

We can assume without loss of generality that each one these cases occur for all x € X and 8 € C since the
general case can be handled by considering the 9 different subsets of X x C. In the proof, we will restrict
ourselves to making the calculations explicit for cases 1 and 2 since the remaining cases can be handled very
similarly. Then, fffl < f < fVfY. Also, we have that

WSS = rtpf = (70 - )+ rE (5 - 45)-
Recall that M = max(A, B). Then, it follows that

[ (#755 = stst) am

IN

201 ([ (£ =) ane) + 10§ - FFIE)
< 4AMéE.

This in turn implies that Hg (e, F, |- ||p,) < Hp(Ce, F1, ||- | p,) + Hp(Ce, Fa, || - ||oo) With C = (2M)~!. Now
we consider case 2. It is not difficult to show that

< r< i
Hence,
2
/ (V15 = i g0) apy < 42|15 = fF )% < A%
X

and we can take C' = A~1. O

Lemma 2.2. Let F be a class of functions satisfying Hp(e, F, || - ||p,) < oo for every € € (0,€) for some
given eg > 0. If D = F — F the class of all differences of elements of F, then

Hp(e,D, |- lpy) < 2Hp(e/2, F, || - || ,)-

Proof. Let € € (0,e0) and d = fo — f1 denote an element in D with (fy, fo) € F2. Also, let (ff, fV) and
(fE. fY) e-brackets for f; and fo. Define d¥ = f& — fV and dV = fY — fL. It is clear that (d*,dY) is a
bracket for d. Furthermore, we have that

/X (a¥(z,y) — dL(ﬂcvy))2 dPy(z,y)

2 2
x X
< 462,
Thus,
2
exp (Hp(2¢,D, |- 1r,)) < exp (Hp(e. 7]l |In,))
which is equivalent to the statement of the lemma. O
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Consider the class Grx defined as
Grc = {9+ 9(®) = gal@) = ¥(aTw), 2 € X, (4, 2) € M % Blew, %)} (2.1)
where Mgy is the same class defined in (10.7).

Lemma 2.3. There exists A > 0 such that for € € (0, K) we have that

AK
HB(eagRKa H ! ||P(J) < T

Proof. See the proof of Lemma 4.9 in Balabdaoui, Durot and Jankowski (2016). O

Lemma 2.4. For some constants C > 0 and 6 > 0 consider the class of functions

Dros = {d:d = fia— fras (fras foa) € Gheld(a™ )| p, <8 for all & € Blaw, &) }.
Let Hpow be a class of functions such that
Hrow = {h Ch(z,y) = ydi(ax) — do(ax), (x,y,a) € X x R x B(ayg, do), (dy,d2) € D%OU} (2.2)
where C > KoV 1. Then, for all € € (0,C) we have that
cc

- - 1
Hy (|- |z, ) < Ho (€7 Hacw, |- In,) € = = -

€

17l 5,p, S D Mo

where

A’—A(z( M +1))71/2 D =16MyC and (j_i 9 +l (2Mg) ™! i 1 (2.3)
= ao Vo s = 0 an _8M0 agp 2e c .

with ag, Mo the same constants from Assumption A6, A the same constant in Lemma 2.5, and H def

HrooD™L.

Proof. Consider (d¥,dY{) and (d%,dY) to be e-brackets of the functions & — d; (e’ z) and = + do(a’x) and
some « € B(a, dp). It follows from Lemma 4.9 of Balabdaoui, Durot and Jankowski (2016) and Lemma 2.2
that there exists some constant A > 0 such that

AC
Hg (67171{0, [l - ||Po> s
Define now
L _qU : >
hL(SC,y) — yd(lj(w) d?](w)a lf Yy =z 0
ydi (x) —ds (x), ify<0
and

’ ydf (x) — di (z), ify <0.
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Note first that (h¥,hY) is a bracket for h(z,y) = ydi(a’x) — do(a®x). Next we compute the size of this
bracket with respect to || - || p,. We have that

| (Wan-rten) e < 2{[ (de-d@)nen)+ [ (@@ -de) )
- z{zao /X (dl{(ac)—df(as))QdG(a:)—&- /X (d;f(a:)—dgx))zda(x)}
< 2(2a0+1)€

where ag is the same constant of Assumption A6. It follows that

Ho (e ) < A

~ ~1/2
with A = A(2(2a0 + 1)) and A is the same constant of Lemma 2.3. Let now D > 0 be some constant

to be determined later. For a given h € H g2, we consider h = D~'h which admits [D~'hF, D-'hV] as
bracket. We will compute the size of this bracket with respect to the Bernstein norm. By definition of the
latter we can write for any function h such that k¥ is P, integrable that

=1
IRl% R, = 22 E|h|de0.
=2

Thus, using this and convexity of the function o ~— |z|* for all k¥ > 2 it follows that

_ _ =1 k
IDRY — DR = QZWAXR‘y(d({(w)—dlL(:B))+d§](:c)—d§(:n)‘ dPy(z,y)
k=2

OOE kUCL‘*La:k x U:cha:k x
2Hk!Dk{/Xley (df (z) — dr(x)) dPo( ,y)+/XXR(d2( ) — d%(x)) dPy( ,y)}.

Using Assumption A7 and the fact that |[d¥| < K2 and |dY| < 2C for i € {1,2} (an assumption that one can
always make in constructing brackets for a bounded class) we can write

oo

k
1/2
|ID~'hY — DR % 5 < ZH(D) {aOM,§2/@!(4C)k_2//¥(d?(m)—df(w))zdPo(m,y)
k=2

A

+a0) [ (@@ - at @) an)}
- () (59 Za(3) e

I
7 N
Ol
N———

[ V]
—

S

o

[~
VRS

0¢]

SIS

Q

N———
ES

+
N |

[~
|
-
o|&
N———

ES
——

m[\')

o

&,

=

o}

&=

IV

2

B

|
K

Taking D = D = 16M,C yields

2
- . 2 1 -
HD_th - D_thH2B P, < <~> <2a() + —(2Mo) 1) €2
) D 2
which in turn implies that

1

~ . 1 1 2
ID7*hY = D= 'ht g R, < o (2@0 + Ze(2Mo) ) ok

8My 2
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This completes the proof of the first claim about the entropy bound of the class H with D defined as above.
Now for a given element h € H we calculate

||B||QB,P0 = 22 F k'/ ]yd1 (v JI) do( a x) ‘ dPy(z,y)

< 2i 21 / {|y|k|d (aTw)‘k—l- ‘d (aTm)|de (x y)}
< =77 1 2 olT,

i— DF k' Jxxr

2k k—2 k—2 T2 T,.\|2

< 22 1 (20) 7 {aoMg k! |di(a"z)|"dPy(z,y) + |da(a”@)|"dPy (@, y)

o D X xR X xR

SMoC\ "2 &1 /8C\"?
< Z 0 + Z — | = v? using the definition of the class
K\ D
k= k=2

2\° 1 (2Mo) ™t 2 :

< B 2a0 + 56 0 v° using arguments as above,

implying that

_ 1 . 1/2
AllB.py <2 (an + 56(2Mo) )

Sl =

as claimed. O

Recall that A" is the support of the covariates X;, i = 1,...,n. Let us denote by X}, j =1,...,d the set
of the j-th projection of & € X. Also, consider some function s that d — 1 times continuously dlfferentiable
on a convex and bounded set C € R?~! with a nonempty interior such that there exists M > 0 satisfying

DF <M 24
g [D*s(8)] < 0

where k = (k1,.. ., kq) with k; an integer € {0,...,d — 1}, k. = Y0 k; and

9" s(B)

DF=__~— 2/
0Bk, - OBk,

Consider now the class
Qe = {ai(@,y) = s(B);(y — ¥(@" ). (. B.v) € Blao,do) x € x Mpc and (z;,y) € X, x € R[. (2.5)
Define
Qjrc = {(ij g =q;D" g € QRC’}7

where D > 0 is some appropriate constant.

Lemma 2.5. Let € € (0,1) and C > max(L2M07Me*1/42*1/2R*172a(1)/26*1/2). Then, there exist some
constant By > 0 and By depending on ag, My, and R such that

~ B:C -
Hp (6, Qirc, | - ||B,Po) < i . Gl B,Py < Ba,

if D = 8M RC' where ag and My are the same positive constants in Assumption A6, and M is from (2.4).
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Proof. Fix j € {1,...,d}. The proof of this lemma uses similar techniques as in showing Lemma 2.4. Let

(g%, gY) be e-brackets for the class Gro. Using the result of Lemma 2.3 we know that there are at most
N < exp(AC/e) such brackets covering Gre for some constant A > 0. Define

zj(y — g"(x)),2;(y — g”(x)) ), if 2; > 0
ko (x,y), kY (z, = 2.6
( (9) ( y)) zi(y—gY(x)),z;(y — g%(x)) ), if ; <0 . (2:6)

Then, the collection of all possible pairs (¢¥, ¢¥) form brackets for the class of functions
Kirc = {kj(a:,y) = 2;(y — ¥(aTz)), (a,0) € Blag, ) x Mpe and (z;,2,y) € X; x X x R}.
Furthermore we have that

1KY — kE2, = / 2(¢" () - g ())*dG ()
X

AN

< o} [ (V@) — oM @) dG@) < 2,

This implies that
ARC
Hp (e Ky, r) < 5=

where A is the same constant of Lemma 2.3. Furthermore, the assumption in (2.4) implies that the function
s belongs to C’;‘\l;l_l as defined in Section 2.7 in van der Vaart and Wellner (1996), with M = 2M. Using now
Theorem 2.7.1 of van der Vaart and Wellner (1996) it follows that there exists some constant B > 0 such
that

d/(d—1)

1 B

1 N(,Cdrl, : oo><B = —.
og N(e,Co 1| l) < B - <

This also implies that

2B
€

Hy (6, C4 |- [l ) = log N (/2,047 | o) <

Indeed, for an arbitrary s € C;‘El there exists s;,7 € {1,...,N}, with N = N(e/ZC’dfl | - |loc), such that

JVa
s — 54|00 < €/2. The claim follows from noting that (s; —€/2, s; +€/2) is an e-bracket for C%! with respect
& N
to || - [|oo- Using Lemma 2.1 it follows that there exists some constant L > 0 such that
1 C
Ho (e Qrel 1n) < L(1+5)
2LC

(2.7)

€

using that C >1,d—1> 1 and € € (0,1). Consider now a constant D > 0, and (¢*, ¢V) and e-bracket. From
the proof of Lemma 2.1 we know that we can restrict attention to the case for example to case 1 assumed to
occur for all (x,3) € X x C. In such that we have ¢* = s'kL and ¢V = sVkY where (s”,sV) is an e-bracket

for C}\Zequipped with || - ||oo, where the expression of (X, kV) is given in (2.6). We can now write
=11 k
ID7'¢Y = D' || 5 = Qzﬁ—k/ |sUEY — sk ap,
. X xR

IN
(]2
[ "
N -
b‘)—‘
ol
—
w
G
—
a3
=
|
ol
h
S—
e
+
=g
h
—
V2]
=
|
Vo)
h
N—
—
——
ISH
s
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Fadoua Balabdaoui , Piet Groeneboom and Kim Hendrickz/ single index model 11
with

/ | (kY — K2 |"ap, < M’“(QRC)’“‘Q/ (KU = k")*dPy = M?(2MCR)*2¢2
X xR X xR

where we used the fact that |s| < M by assumption of the lemma (implying that we can constructs brackets
(st, sY) satisfying the same property), and k¥ — kU = z;(g¥ — g*) < 2RC. Also, if we assume without loss
of generality that x; > 0 is satisfied for all z € X we have that

[ shlfan < @t [ e gt @) dR(eg) < &
X XR X xR

IN

ey R [yl g @) YR, x
A xR

IN

(2M)F—2 Rkogk=1 (aoMg“*?k! + Ck)EQ.
Putting these inequalities together and after some algebra we get

ID~'q” =D~ 'q" |3 p,

1/2M\? 2RC\* 2R\’ 1
< (L™ 4MCR/D SMCR/D | o < 2
_<2<D>e +(D)e 20\ 5 ) TR ) €

Now let us choose D = D > max(16M MR, 8MRC). In particular, we can assume that C' is large enough
so that max(16MMoR,8M RC) = 8MRC = D (or equivalently C' > 2My). Then, 4MCR/D = 1/2,
8MCR/D =1/4, and 8MMyR/D = My/C < 1/2. Therefore,

1 /2M\? 2 2 2R\ 2
- <~> 61/2 + ( RVC) e + 4a0 <~R> 62
2\ D D D

1
- (2M261/2 4R C? + 16a0R2) 52 e

|ID7'qY — D¢ (I3 5,

Ac? A,
= € = €
D2 64M2R?

if C is large enough, where A = 2M?2e'/2 + 4R%e + 16aoR2. Tt follows that we can find some constant L > 0
such that

ID~'" =D '¢"|lpp, < Le

This in turn implies that

Hg(Le,Qjresll - Im) < Hp(e,Qire. |- Ip)
2MC

€

S

using (2.7). Hence, we can find a constant By > 0 such that

B, C

Hg(e,Qjre, |l - lls.p) < c
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Fadoua Balabdaoui , Piet Groeneboom and Kim Hendrickz/ single index model 12

Now we turn to computing an upper bound for ||G;||5,p,. We have

1
1311%,p, = 22513*’“/2( R\S(B)I’“Ixj(y—¢(aTw))|deo(w,y)
k=2 x
= ky—k Kk k T \k
< 3o | Al +leta™=) ari(a.y)
< ¥ %2’“D‘k(RM)’“ (aoM(’f’zkzl + Ck)
k=2
_ OIMR\? XN [2RMM\"? 1 /[2MRC\* 1 QORMC\ *72
<o) L(F5) :5) Zamm (F5)
k=2 k=2
1 2 oo 1 k e3¢} 1 k
< () 2(1) (0 Sa ()

k
31(1\° ,, .
1—1—5 5) ¢ if D=4MRC and C > max(1,2M).

1 2
< (30)

The proof of the lemma is complete if we write By = (3a/16 + e'/2/8)1/2.

In the next lemma, we consider a given a class of functions F which admits a bounded bracketing entropy
with respect to || - || p, for € € (0,1]. Suppose also that there exists D > 0 such that ||f||cc < D and 6 > 0

such that || f||p, < ¢ for all f € F. Then we can derive an upper bound for the bracketing entropy for the
class

F = {f f(ar:,y) = (4MoD) ™ f(x) (y - Az/)o(aga:)), (r,y) e X xRand f € .7:}
(2.8)

with respect to the Bernstein norm. Here, My is the same constant from Assumption A6 and D is a positive
constant that will be determined below.

Lemma 2.6. Let F be a class of functions satisfying the conditions above. Then,
Hy(e,F, | - ls,p,) < He(eD™' F,|| - |r,), and | fllpp < DS

where

1/2
- ao NK§ k. (2Mo)~ ! —1
D= oreMo D 2.

<2Mg TRz (2:9)

and ag, My are the same constants from Assumption A6.

Proof. Let (L,U) be an e-bracket for F with respect to || - || p,. Consider the class
= {f’ cfx,y) = f(:c)(y — A¢o(a§w)), (,y) e X xRand f € }'}.
Then for f' € F’ we have

L(z)(y — Mpo(agx)) < f'(m,y) < U(x)(y — Mpo(af ), if y — Mpo(af w>>0 or
Ux)(y — Mo(af ) < f'(m,y) < L(x)(y — Moo(ad @), if y — Mpo(alz) <
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Fadoua Balabdaoui , Piet Groeneboom and Kim Hendrickz/ single index model 13

Let (L',U’) denote the new bracket. Using the definition of the Bernstein norm, convexity of = + z¥, &k > 2
and ||¢o|lcc < Ko we have that

|(U" = L") (4MyD)~

—k
% / (U(x) - L(®))*ly — Mo (g =) dPo(x, y)
. X' xR

1112
HB,P{)

I
M

b
[|

2

—k
S /XXR<U(w> — L(@))*2 7 (Il + Moo (af @) dPy (2, y)

IA
[\}
M8

b
[|
N

e 1
- E 2 DFMEE! /XX]R(U(@ = L(@))" (Jy* + \"KG) dPo (. y)

o0 1 -
= Z 2k DFFR /XXR(U(J:) — L(x))*(aok!ME~2 + \FKE)dPy (2, )
k=

[es} k—2

ao 1 ) A2K2 AK 1 / ,

< — - _
S DzD? k§:2 = /XX]R(U(w) L(z))*g(z)dz + mag 2=\ 20, o XxR(U(w) L(z))*g(z)dx

00 VK i 1 A\,
€ €
T 2MED? T 8D2MZ & (k- 2)! \ 2My
o NK§ AKo(2Mo) ™1 ) 2 2 2
< ol=Mo =D .
= (2M§D2 M VRN ‘ ‘
This implies that

Hy (D, 7| |n.r,) < Hy (. F.l|-l1r,)
or equivalently
Hy (e, |- In.n) < H (DL - I, ).

Using similar calculations we can write

- >, 1 1
IEe = 23 marpwn / F(@)Fly - Molala)*dPa, y)
k=2

IN

1 -
55 G ’“k'/X @R ekt M2 + N g ()
k=2 x

a = 1 NE2 (AN TP 1 ,
<
= <4M02D2 £ 9= 8D2M22 2MM, (k—2)! /XXRf(fB) g(z)dz

< D%*?
which completes the proof.
O
In the next corollary, we consider the class
F= {m = foa(®) = Biay (@i ) — B o(a’x), z € X, € B(ao,d)}
where E; o(u) = E{X;la”X =u} fori e {1,...,d} and § € (0,8). Using the same arguments in the proof

of Lemma 3. 3 with f(x) = z; it follows that for all z € X and o, &’ € B(aeg, )

[for (@) = fa(@)] < M|’ - af
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for the same constant M of that lemma. Now, we can apply Theorem 2.7.11 of van der Vaart and Wellner
(1996) to conclude that

Np (26, F,| - |p) < N(&Blew,d), |- )

where N (e, B(a,d), || - ||) is the e-covering number for B(a,d) with respect to the norm || - || which is of
order (§/€)? for € € (0,0). Hence, using the inequality log(x) < z for > 0 we can find a constant M’ > 0
depending on d such that

M’

Hy (e, F | In) < =

Furthermore, there exists M > 0 such that ||f||.o < M6 and || f||p, < M.

Lemma 2.7. Let F be the class of functions as above and consider the related class

F={f: @y = 1@)(y - Molad @), (@,y) € X xR, [ € F}. (2.10)
Then,

El|Gnll#] S 6.
Proof. Note that for any function f € F’ and constant C' > 0 we have that G, (f'C~') = C~'G,, " implying
that ||G,||7 = 4MoMo0||Gy|| 7, where
F={J: F@y) = aMol16) " f'(,y), [ € F'}.

Note also that the constant D in Lemma 2.6 is given by D =< 6=, where D depends on M, ag, My and K.
Also, using the entropy calculations along with Lemma 2.6 we can show easily that

Hp(e, F, | -lls.p) S

a | =

and that || f]|z.p, < 1. Using Lemma 3.4.3 of van der Vaart and Wellner (1996) it follows that there exists

some constant B > 0 such that

J,
~1 < n
BlIG. 5 5 0, (14 22 )

with J,, = fOB V/1+ B/ede. Hence, E|||G,| z] <1 and E[||G,|#] < 6 as claimed. O
3. Supplement C: Auxiliary results
Proof of Lemma 4.1. We have:

(F5(80))" ATs(80) {(Fo(B0)" ATs(80)} " (F5(80))" ATs(B0) = (Fo(B))" ATs(B0).

In the parametrizations that we consider, the columns of Js(By) are orthogonal to ap. We can therefore
extend the matrix Js(Bp) with a last column oy to a square nonsingular matrix Js(Bp). This leads to the
equality

(Fa(80)) " AT5(80) { (J5(B0))" ATs(Bo) ) (Js(B0))" AT5(Bo) = (J (o))" AJs(B0).
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_ 1 _
Multiplying on the left by ((Js(ﬂo))T) and on the right by Js(8) ™!, we get:

AT5(80) { (J5(80)) ATs(B0)} (Js(B0))” A= A, (3.1)

-1
This shows that Js(Bo) {(Jg(,@o))T AJg(,BO)} (Js(Bo))" is a generalized inverse of A.
To complete the proof and show that it is indeed the Moore-Penrose inverse of A, we first note that

-1

J(80) { (Js(Bo))” AJs(80) ) (Jo(Bo))T AJ(80) { (F5(80))" ATs(Bo)} (Is(Bo))"
= J(80) { (s(B0))” ATs(B0)} (T80 (32)

Furthermore,

T

(47:(00) {(t00)” Ae(60)} " (Fa(60)" )

= 72(80) { (F:(80)" ATs(B0) ) (Je(80)” AT
= J5(80) { (Fo(B0))" ATs(80)} (T80 A,

where the last equality holds since A is symmetric, being a covariance matrix. We have to show that

J5(80) { (:(80)" AT:(B0)} (Fo(B0))" A
= AJ5(80) { (Js(80))” ATs(B0) ) (Ts(Bo))" (33)

Multiplying on the left by (Js(Bo))? and on the right by Js(3o), we get:

(F5(80)) " Ts(80) { (I5(80)) ATs(Bo) )} (Je(B0)” AT (6o)
= (Js(B0))" Js(Bo)

= (J5(80))" ATs(B0) { (F5(B0)) ATs(80) ) (Fs(80))" Je(o),

and (3.3) follows by the orthogonality relation of the columns of Js(8y) with ag in the same way as before,
replacing the matrix Js(Bo) by Js(Bo) in the outer factors of the equality relation.
In a similar way we obtain:

T

= J5(80) { (Js(B0))" ATs(B0)} " (Js(80)” A. (3.4

Since the matrix Js(8o) {(JS(BO))T AJS(BO)}_l (Js(B0))T satisfies properties (3.1), (3.2),(3.3) and (3.4),

the matrix satisfies the four properties which define the Moore-Penrose pseudo-inverse matrix of A. This
completes the proof of Lemma 4.1. O

Remark 3.1. The same proof holds for showing that the Moore-Penrose inverse A is given by

T80 { (Js(80))” Ade(B0)} (Js(B0))”
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Lemma 3.1 (Derivative a — o (a’x)).

0
Sva(@’@)| = (z;- B(X,la"X = af @) vi(af @)
7 a=oon
and
9 T _ 0 T
Tﬁj%‘(a x) ‘a:ao = 35, Vs (S(8)" x) ‘ﬁ:ﬁo

= (J5(Bo)"), (= — B(XIS(B)" X =S(8)"x)) ¥ (S(B)" ) ,
where (Jg(,@o)T)j denotes the jth row of Js(Bo)T

Proof. We assume without loss of generality that the first component oy of a is not equal to zero. Denote

the conditional density of (Xa, ..., X4)T given a’ X = u by hq(-|u) Using the change of variables t; = o’ x,

t; =x; for j =1,...,d, the function 1o can be written as

va(ax) = Elfo(af X)|a" X = o’ z]
d d

(07 - - - . -
/wo cor (@Tx — anZo — ... — ag¥y) + Z aojZ; | ha(Za, ... ,Zqlalx) H dz;
=2 =2
with partial derivatives w.r.t. a;; for j = 2,...,d given by,
2 pula’a) = 2 Elby(al X)la’ X = a’al
801j * 8aj 0
N N d d
01 - 01 - - - - .
= / a—(acj — &) . (aTa: — Qoo — ... — aqZq) + Z a;Z; | ha(Ze,. .., xd|aT:c) H dz;
! ! j=2 j=2
d P d
Qo1 - . - - .
/wo ! aT:c — QoTy — —aqZq) + Z ;T Tha(xg, .. ,xd|aTm) H dz;
=2 @ j=2
which is at a = o equal to
P d
gwa(aTw) ’a . = /(Q;J — jj)'(/)g (agm) hao (572, .. ,£d|agw) H d.i‘j
j =2

= d’o 0‘0 {% E(X; |0‘(:)FX = agm)}

For the partial derivatives w.r.t. a; we have,

9 T
@wa(a CE)
Qo o o d
— / {01 - —Ozl(aTm — oy — ... — adﬁsd)} A oL (aTm —Qolg — ... — aqZg) + Z a5 T
(651 ay Qi j=2
d
ha (%o, ..., EqlaTx) H dz;
j=2
ale — asdy — — aqlg d 0 d
+ /wo alx+ (a1 — 1) + Z(aoj — )T a—h(ig, .. xd\a x) H dz;,
a i=2 a =2
and,
0
a—wa(aTa:) =y ( ‘10 {1’1 X1|o¢0 = agm)} .
a1 a=oayg

This proves the first result of Lemma 3.1. The proof for the second results follows similarly and is omitted. [J
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Lemma 3.2. Let ¢ be defined by
— [ {y-vata’®)} dRs(@) = [ @ {v0(afe) - valaTa)} dG(a), (3.5)
then we have for each o € B(av, &),
¢() =E [Cov [ X, (e’ X + (ag — )" X)|a" X]].
Moreover,
a’g(a) =0
and,
(@0 — @) g(a) = E [Cov [(ag — )" X, ¢ho(@” X + (a9 — @)" X)|a" X]] >0,

and o is the only value such that the above equation holds uniform in a € B(eg, do)-

Proof. We have,
3@) = [@{y = valaTa)} dPia.y) = [ @ {vn(af2) - vala’e)} dG(a)

= [« [wnlafz) - E {v(af X)la’ X = a"=}] dG(a

=E [Cov [ X, ¢o(af X)|a" X]], (3.6)
and

aT/:c [¢o(af @) — E{tho(af X)|a" X = a’x}] dG(z) = E [Cov [a" X, 1o(af X)|a" X]] =0

We next note that,

(ap — )" d(a) = E [Cov [(ag — )" X, 0 (af X)|a” X]]
=E [Cov [(ap — )T X ho(a” X + (g — a)TX)|ozTXH ,

which is positive by the monotonicity of 1y. This can be seen as follows. Using Fubini’s theorem, one can
prove that for any random variables X and Y such that XY, X and Y are integrable, we have

Cov{X,Y}=EXY — EXEY = /{IP’(X >5,Y >t)—P(X > s)P(Y >t)}dsdt.

Denote Z; = (a9 — )T X and Zy = ¥g(u + (g — a)T X) = tpg(u + Z1), then, using monotonicity of the
function g, we have

]P)(Zl Z 21, Z2 Z ZQ) = ]P)(Zl Z max{zl, 22}) Z P(Zl Z max{zl, 22})[@(21 Z min{zl, 22})
=P(Z1 > 21)P(Z > 22}

where
Zp = by H(22) —u = inf{t € R :ahg(t) > 22} — u.
We conclude that,
Cov{(ap— a)" X ,1o(a" X + (g — @) X)|a" X = u}

= /{]P)(Zl Z Zl,Zg Z 22) — P(Zl Z Zl)IP(ZQ Z ZQ)}det Z O7
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and hence the first part of the Lemma follows. We next prove the uniqueness of the parameter . We start
by assuming that, on the contrary, there exists a1 # g in B(ag, dg) such that

(g — )T p(a) >0 and (o — )T é(a) >0 for all o € B(axg, do),
and we consider the point e € B, Jp) such that
la; — avjol = |a — a1 forj=1,...,d
For this point, we have,

(g — )T pla) = —(a; — )T p(a) for all o € B(ex, do),

which is not possible since both terms should be positive. This completes the proof of Lemma 3.2. O

Lemma 3.3. Let f : X — R*, k < d be a differentiable function on X such that there exists _a constant
M > 0 satisfying ||f|lco < M. Then, under the assumptions Al and A5 we can find a constant M > 0 such
that for all o € B(a, dp) we have that

sup [E[f(X)|a”X = a’z] - E[f(X)|al X = alz]| < M|a — ayl|.
(z,X

Proof. We can assume without loss of generality that a1 # 0 where ag; is the first component of oy. At
the cost of taking a smaller dp, we can further assume that é&; # 0 for all & € B(a, dp). Consider the change
of variables t; = a’” X, t; = 2; for i = 1,...,d. Then, the density of (a” X, X»,...,X4) is given by

1 1
Y(@aTX Xy, xX0)(t1s -5 ta) = g ( (t1 —agty — ... —agtq),ta, . .. 7td> —.
aq 851
Then, for i = 2,...,d, the conditional density g(x,, .. x,)ja”x=u(T2,...,2q) of the (d—1)-dimensional vector

(Xo,...,X4) given that o’ X = u is equal to

g (—“_0‘27”2;1‘"_0“1“ L, Ty ,xd>
1 J
(3.7)
where the domain of integration in the denominator is the set {(x2,...,zq) : (x,X)}. Note that X; =

(X —asXy — ... — agXg4)/ay. Thus, for (x,X) we have that

E[f(X)|a'X = a’z] = E[f(X1, Xa, ..., Xg)|a" X = aTx]

aTX—OéQXQ—...—OédXd
-l (T

,XQ,...,Xd> | aTX:aTac]

aq

T d
AL — O — ... — Qqglyq
= /f( 7952,...,:1:,1) ha(zo,. .., xqla’ ) | I dz;.
Jj=2

Note now that function

Qi
f g(aTm—aztagl—~~-—adtd , t2’ . ,td) H?:Q dt]

is continuously differentiable on B(a, dp). This follows from assumptions A1 and A5 together with Lebesgue
dominated convergence theorem which allows us to differentiate the density g under the integral sign. With

T
X E—2T2—...— g g
g( 73327.-.,1’(1)

a— ho(xa,.. .,xd|aT:Jc) =
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some notation abuse we write dh/dx; for the i-th partial derivative of a = he (22, .., 74la’ ). Straight-
forward calculations yield
Oha aTe — sy — ... — agrg
- = 9 y L2+ Xd
0oy Qg
d 2] Te— —— d
f Zi:2(xi — tl)(’?ﬁi (a x ozztozl1 agta oy atd)) Hj=2 dt;
X 5 ,
OZ% (fg(aTw—azgf...—a(itd ’ tg, o 7td) H?ZQ dtj>
and fori=2,...,d
Oha <aT:v — Q9T9 — ... — Ty )
= -9 y L2y 5T
60@ (65}

T — — p—
f(xl —t) 5951 (a x aztjl ..—agty o, ... ,td)) H?:Q dt;
«a f alz—asto—...—agyty t t Hd dt: 2 '
1 g a1 y 02y ld j=2Ulj

Assumptions Al and A5 allow us to find a constant D > 0 depending on R, ¢, ¢y and ¢; such that

Oha
<D
H Oay lloo — ’
fori=1,...,d. Consider now the function a — E[f(X)|aT X = aTz]. Using the assumptions of the lemma
and applying again Lebesgue dominated convergence theorem we conclude for i € {1,...,d} that we have
OE[f(X)|aTX = aTz]
aai
aTx — qoxe — ... — agzy Oha(z2,. .., 24/alx) d
:/f< a ,272,...,33'd> 3o¢i Hdﬂ?j
j=2
Furthermore, we have that
E[f(X)aTX = aT d
sup B[S (X)lex aw]’<MD/Hdmj:M',
(z,X da; j=2
foralli e {1,...,d} and (&, X) and & € B(exg, ). The results now follow using a first order Taylor expansion
to obtain
d ~ ~
OE[f(X)aTX =aTx
El/(X)la’ X = o"a] - E[f(X)od X = afa)| = | BIRE X Zaral,
i=1 ’

for some a € R4 such that [|a — ag| < [Ja — ag|. Bounding the right side of the preceding display by
M|l — exgl] with M = dM’ gives the result.
O

Lemma 3.4. Denote fori € {1,...,d} theith component of the function u — E[X|aT X = u] by E; . Then
E; « has a total bounded variation. Furthermore, there exists a constant B > 0 such that for all o € B(a, dp)

|Ei allo < B, and / \E{a(u)\du < B.
Te
where Io, = {aTx : x € X}.
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Proof. Since X C B(0, R), it is clear that ||E; «llcc < R. As above let us assume without loss of generality
that the first component of «y is not equal to 0. At the cost of taking a smaller §y, we can further assume
that &1 # 0 for all & € B(ag, dp). We known that for i = 2,...,d

E;o(u) = /:viha(xg, coxglu)das ... dag,
where integration is done over the set {(za,...,zq) : (€, X)} and u € T, C (ag — doR, by + doR) and where

hea denotes conditional density of (Xa, ..., Xy)" given a’ X = u, defined in (3.7). Using assumptions Al and
A5 along with the Lebesgue dominated convergence theorem we are allowed to write

0
E; o(u) = in%ha(l‘g, sy zglu) da .. dg.
Straightforward calculations yield that
0
—ha(xo, ..., zq|u
o™ o2 alu)
- % (u—anQ;I_.—(xdmd T, ... ,$d>
u—aztz—.“—adtd d
o (o (=i by, ) [T )
oty d
g (a% (u — Qoo — ... — QQTG), T2, - - - ,xd> 88791 (—“ a2t2a1‘" Qatd ¢, . ,td) Hj:2 dt;

2
a7 (fg(%ﬁadtd,tg, ‘e ,td) H?:Q dtj)
Thus, we can find constant C' > 0 depending only on |ag 1], ¢y, ¢;, @ and R such that [ |E] ,(u)|du < C for
all a € B(aw, dp). Now B = max(R, C) gives the claimed inequalities. If i = 1, then

d

Eio(u) = 1 (u — ZEj,a(U)), and € ,(u) = ail (1 —a;j ie;a(u)).

Jj=2 Jj=2

for u € I,. We conclude again that the claimed inequalities are true at the cost of increasing the constant
B obtained above. O

Lemma 3.5. Let f be a function defined on some interval [a,b] such that

[flloe <M, V(f,a,b]) := sup Do If(zg) = flaj-)l < M

a=z0<x1...<Tp=b J=1

for some finite constant M > 0. Then, there exist two non-decreasing functions fi1 and fo on [a,b] such that
Il f1lloos [ f2lloo < 2M and f = fo — fi.

Proof. The fact that f = fo — f; with f; and fo non-decreasing on [a,b] follows from the well-known
Jordan’s decomposition. Furthermore, we can take fi(z) = V(f,[a,2]) and fo(z) = f(x) — f1(x)for (z, [a, b].
By assumption, |[fifc <M <2M and [|fa|| < [[fllcc + [l f1llcc < 2M. 0

Lemma 3.6. Under Assumptions A4-A5, we can find a constant C > 0 such that for all a close enough to
o we have that

Valu) > C

for allu € Zy.
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Proof. We assume again that a; # 0. By calculations similar to the calculations made in the proof of Lemma

3.1, we get
Qo1 ;| @o1 ~ d ~
Yalu) = . /1/)0 o —(u— ey — ... — aqlq) + ;aojxj oo, ..., Zqlu) H dz;
01 4 8
/wo (u— oo — ... — agZyq) —|—;aoja~cj 0 W&o, ..., &qlu) Hde
Now, a Taylor expansion of «; in the neighborhood of ay ; and using that a1 /01 = 1—€1/ap 1 +0(€1) yields
Yo ( o (u— oy — -+ — agq) + a2 + -+ + ao,dﬂfd>
=1 (u - E—1(u — €Ty — ... — €q%q) + 0(61)>
Qp,1
= o(u) — %(u — €2T2 — ... — €4xq) Y, (u) + o(€r)

— go(u) — %uwaw) +o([le — a)).

Using the Lebesgue dominated convergence theorem and the fact that he(Z2,...,ZTq4u) is a conditional

density it follows that

d d
Qo1 - - _ 0, . -
/wo a—l(u — oy — ... — aglq) + ;aojxj %h(fﬁg, cey Zglu) H dz;, = o(la — ay),

Jj=2
such that

w;(u)zC(l—61)+0(a—a0)20>0,

Qo1
provided that ||a — apl| is small enough.

Lemma 3.7. If h < n='/7, then there exists a constant B > 0 such that for all o € B(ax, 8)

[Waloe <B  and /wnha( J|du < B,

where To, = {aTx : x € X}
Proof. Using integration by parts and Proposition 3.2, we have for all u € Z,

Vinal) = [ 5 (“55) dinalo

=i (et [ (5

= h/K( h )dz/;a /K' (Vna(u + hw) — Yo (u + hw))dw
= Ya(u) + O(h?) + Op(h™" lognn™"/%) = ¥, (u) + 0p(1).

This proves the first part of Lemma 3.7. For the second part, we get by a similar calculation that,

w;:h,a<u>1/ff(“$)w @)z + = [ K" () (et 4+ ho) — a0+ haw) o

) ($na(@) — Y ()2

h h h?
1 _
= E/K (u ; as) " (z)dx 4+ Op(h~2lognn™1/3).

Since h=2lognn~1/3 = o(1) for h < n='/7, the second part follows by Assumption A10.

O
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