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Abstract

The strong Feller property is an important quality of Markov semigroups which helps for

example in establishing uniqueness of invariant measure. Unfortunately degenerate stochastic

evolutions, such as stochastic delay equations, do not possess this property. However the

eventual strong Feller property is su�cient in establishing uniqueness of invariant probability

measure.

In this paper we provide operator theoretic conditions under which a stochastic evolution

equation with additive noise posseses the eventual strong Feller property. The results are

used to establish uniqueness of invariant probability measure for stochastic delay equations

and stochastic partial di�erential equations with delay, with an application in neural networks.
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A stochastic delay di�erential equation with additive noise can be modeled (see [7], [2]) as a
stochastic Cauchy problem in some Hilbert space H of the form{

dX(t) = [AX + F (X)] dt+G dW (t) t ≥ 0, a.s.
X(0) = x a.s.

(1)

where A is the generator of the delay semigroup, F a su�ciently smooth function (e.g. Lipschitz),
and G a linear operator mapping the Wiener process W into H. It is well known that under the
mentioned assumptions, existence and uniqueness of solutions is guaranteed.

So far however, the ergodic behaviour of these systems was less well understood. An important
notion in this respect is that of invariant probability measure, i.e. a positive �nite Borel measure
µ on H with µ(H) = 1 such that if the initial condition x has law µ, then the solution X(t;x) has
law µ for all t ≥ 0. Recently the existence of an invariant (probability) measure was established for
a su�ciently broad class of stochastic Cauchy problems to include the case of �nite dimensional
stochastic delay di�erential equations [2].

Apart from the existence of an invariant probability measure, its uniqueness is an important issue.
When an invariant probability measure is unique, the ergodic property `time average equals spatial
average' holds:

lim
T→∞

1

T

∫ T

0

ϕ(X(t;x)) dt =

∫
H

ϕ dµ, ϕ ∈ Bb(H),

where Bb(H) are the bounded Borel measurable functions on H.

Just as the problem of existence of invariant measures, also the problem of uniqueness of the
invariant probability measure of stochastic delay di�erential equations were open for some time.
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A partial solution to this problem was proposed by using the dissipativity properties of the delay
semigroup (see [8] and [1]).

In [19] general conditions for the uniqueness of the invariant probability measure are established
for the nondegenerate noise case. However, the noise that perturbs delay equations can in�uence
only the present of the process and not the past and is therefore essentially degenerate, so these
results do not apply here. In [4] results are obtained for degenerate noise, but these do not include
the case of delay equations.

Often uniqueness of invariant probability measure is proved using Doob's theorem (see e.g. [8],
Theorem 5.2.1). This requires irreducibility and the strong Feller property of solutions. In [8]
the eventual strong Feller property for systems of the form (1) was conjectured. This property
states that P (t)ϕ is continuous and bounded for any ϕ ∈ Bb and is important in establishing
the uniqueness of the invariant probability measure. It is not immediate that the strong Feller
property holds, because usually some kind of non-degeneracy assumption on the noise is required.
However, in the case of stochastic delay di�erential equations, the noise is intrinsically degenerate
because it can only work on the `present' of the process, while the state space also contains the
`past' of the stochastic evolution.

In [19] uniqueness of an invariant probability measure was established for nondegenerate di�usions
in Hilbert spaces, and in [4] for degenerate di�usions. However, in the latter, only the immediate
strong Feller property was established which is too strong for our purposes: the delay semigroup
can never be immediately strong Feller. In [14] and [16] an overview is given of results on uniqueness
of invariant probability measures and on strong Feller di�usions, respectively. In [9] and [10] the
immediate strong Feller property and irreducibility are proven for (possibly degenerate) di�usions,
by applying Malliavin calculus. Their result does not apply to stochastic delay equations since
these can only be eventually strong Feller. Uniqueness of invariant probability measure in Banach
spaces is discussed in [20].

In this paper we establish conditions that are su�cient to establish uniqueness of the invariant
probability measure for degenerate stochastic Cauchy problems of the form (1). We combine
methods from the now classical semigroup approach initiated by Da Prato and Zabczyk [7], and
from Malliavin calculus, inspired by succesful applications in e.g. [12], to obtain the eventualy
strong Feller property, uniqueness of invariant probability measure and eventual irreducibility.
In [15] the eventual strong Feller property for delay equations with additive noise is established
by a probabilistic method. However, we think the operator theoretic conditions established by
our method are easier to verify in practice. Very recently the uniqueness of invariant probability
measure for general stochastic delay equations with multiplicative noise was established in [11].

Our main result is stated in Section 1. The proof is split into two parts, discussed in Sections 2
(strong Feller property) and 3 (irreducibility). The result is applied to stochastic delay di�erential
equations and a stochastic partial di�erential equation with delay (with application to the �eld of
neural networks) in Section 4.

1 Main result

We will study di�erential equation (1) under the following assumptions. See [7] for necessary
de�nitions.

Hypothesis 1.1. (i) H is a Hilbert space;

(ii) (S(t))t≥0 is a strongly continuous semigroup acting on H with generator A;

(iii) W is a cylindrical Wiener process with RKHS H;

(iv) F : H → V ⊂ im (G), with V a closed subspace of H, is globally Lipschitz;
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(v) G ∈ L(H;H) (the linear space of bounded linear operators from H into H) and a mapping
G−1 ∈ L(V,H) exists such that GG−1 = I on V ;

In many cases it is convenient to take V = im (G). However if F maps into a strict subspace of
im (G) the condition of pseudoinvertibility of G can be relaxed by letting V ( im (G).

We will assume throughout this section that for any x ∈ H, there exists a unique mild solution
(X(t;x))t≥0 of (1). Su�cient conditions for this to hold are that G ∈ LHS(H;H) (see [7]).

We need the notions of null controllability and approximate controllability, which we will de�ne
now.

Let H, H be Hilbert spaces. Consider the controlled Cauchy problem{
ẋ(t) = Ax(t) + f(x(t)) +Gu(t), t ≥ 0
x(0) = x0

(2)

with A the generator of a strongly continuous semigroup (S(t))t≥0 on H, f : H → H globally
Lipschitz, G ∈ L(H;H) and where u ∈ L2([0, T ];H) is called the control.

De�nition 1.2 (null controllability). The system (2) is null controllable in time t > 0 if for any
x0 ∈ H there exists a control u ∈ L2([0, t];H) such that x(t;x0) = 0.

The pair (A,G) is called null controllable in time t > 0 if (2) with f ≡ 0 is null controllable in
time t > 0.

It is well known (see [7], Section B.3) that null controllability of (A,G) in time t > 0 is equivalent
to

im S(t) ⊂ im Q
1/2
t , (3)

where the controllability Gramian Qt ∈ L(H) is de�ned by

Qtx :=

∫ t

0

S(s)GG∗S∗(s)x ds, x ∈ H. (4)

Furthermore, since the linear operator Q
−1/2
t S(t) : H → H is closed and de�ned everywhere on

H, by the closed graph theorem it is bounded.

De�nition 1.3 (approximate controllability). The system (2) is said to be approximately con-
trollable in time t > 0 if, for arbitrary x0, z ∈ H and ε > 0, there exists a control u ∈ L2([0, t];H)
such that |x(t;x0, u)− z| < ε.

The pair (A,G) is said to be approximately controllable in time t > 0 if (2) with f ≡ 0 is
approximately controllable in time t > 0.

Any property of an evolution that holds for some �xed time t > 0, but not at time t = 0, is said
to hold eventually. Note that eventual approximate controllability is not implied by eventual null
controllability, as illustrated by the following example.

Example 1.4. Consider the nilpotent shift semigroup (S(t))t≥0 on H = L2([0, 1]), given by

S(t)f(σ) =

{
f(t+ σ), 0 ≤ σ ≤ 1− t,
0 1− t < σ ≤ 1.

Let A denote the in�nitesemal generator of (S(t))t≥0. Then the (deterministic) evolution, given
by

ẋ(t) = Ax(t),

considered as a control system with G = 0, is null controllable in time 1. Indeed, S(1)f = 0 for
all f ∈ H. However, it is clearly not approximately controllable: 0 is the only reachable state.
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Note that in this case, there is a unique and strongly mixing invariant probability measure, namely
the Dirac measure on 0. In general, for linear equations (i.e. of the form (1) with F = 0),
null controllability is su�cient to ensure regularity and hence uniqueness of invariant probability
measure, which then is strongly mixing. See [8], Theorem 7.2.1. �

Before we can state the main result of this paper, we recall some more notions. The (Markov)
transition semigroup associated to a Markov process (X(t;x)) is de�ned as the family of operators
(P (t))t≥0 acting on Bb(H), de�ned by

P (t)ϕ(x) = E[ϕ(X(t;x))], ϕ ∈ Bb(H), x ∈ H, t ≥ 0.

The transition semigroup (P (t))t≥0 is called strong Feller at t > 0 if P (t)ϕ ∈ Cb(H) for all
ϕ ∈ Bb(H), and irreducible at t > 0 if P (t)1Γ(x) > 0 for any open, non-empty Γ ⊂ H, x ∈ H. A
positive Borel measure µ on H is said to be invariant for (P (t))t≥0 if∫

H

P (t)ϕ dµ =

∫
H

ϕ dµ for all ϕ ∈ Bb(H), t ≥ 0.

If furthermore µ(H) = 1 then µ is called invariant probability measure.

An invariant measure µ is called strongly mixing if

lim
t→∞

P (t)ϕ(x) =

∫
H

ϕ dµ, for all ϕ ∈ Bb(H), x ∈ H.

The following theorem is the main result of this paper.

Theorem 1.5. Suppose the assumptions of Hypothesis 1.1 hold and the pair (A,G) is eventually
null controllable. Then the transition semigroup corresponding to (1) is eventually strong Feller
and there exists at most one invariant probability measure for (1). Furthermore, if the pair (A,G)
is eventually approximately controllable, then the transition semigroup is eventually irreducible.
In case (A,G) is both null controllable and approximately controllable then the unique invariant
probability measure is strongly mixing, in case it exists.

Proof: In case of eventual null controllability, by Theorem 2.5 the transition semigroup associated
to (1) is eventually strong Feller. Furthermore, by Theorem 2.6, there exists at most one invariant
probability measure for (1). By Corollary 3.2 it is eventually irreducible in case of approximate
controllability of (A,G). Hence by Khas'minskii's theorem ([8], Theorem 4.1.1), in the combined
case, the transition semigroup of (1) is regular at time 2T . Then the strongly mixing property
follows from Doob's theorem ([8], Theorem 4.2.1).

2 Null controllability and the strong Feller property

In this section, we will see that Hypothesis 1.1 and the null controllability of (A,G) are together
su�cient to prove the strong Feller property and uniqueness of invariant probability measure of (1).

2.1 Linearized �ow

We will make use of the notioin of the Fréchet di�erential. Suppose H,K are Hilbert spaces
and F : H → K is Fréchet di�erentiable. We then denote the Fréchet di�erential of F by
dF : H → L(H;K). Let V denote a closed subspace of K containing im (F ) and note that
dF : H → L(H;V ).

We are interested in dependence of the solution (X(t;x))t≥0 of (1) on the initial condition x.
Therefore we de�ne, for arbitrary directions ξ ∈ H, the derivative processes J0,tξ := dxX(t;x)ξ,
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where dxX(t;x) is the Fréchet di�erential of X(t;x) with respect to x. Assume for now that
F : H → im (G) is continuously Fréchet di�erentiable, with ||dF ||∞ <∞.

By [8], Theorem 5.4.1, J0,tξ is a mild solution to{
d
dtJ0,tξ = AJ0,tξ + dF (X(t;x))J0,tξ a.s., t ≥ 0
J0,s = ξ a.s.,

and there exists a constant C > 0 independent of ξ such that

sup
t∈[0,T ]

E|J0,tξ|2 ≤ C|ξ|2. (5)

More generally de�ne for s ≥ 0 and t ≥ s the linear, stochastic operators Js,t as the pathwise
solutions of

Js,tξ = S(t− s)ξ +

∫ t

s

S(t− r)dF (X(r;x))Js,rξ dr (6)

for ξ ∈ H.

We set out to express the dependence of X(T ;x) on the initial condition x in terms the dependence
of X(T ;x) on the noise process W . For this we need the notion of Malliavin derivative.

2.2 Malliavin calculus

Our exposition of the Malliavin calculus is based on [3], Chapter 5.

Let W be a cylindrical Brownian motion with reproducing kernel Hilbert space H and let K be a
separable Hilbert space.

We �rst de�ne the Malliavian derivative of smooth variables. A random variable X ∈ L2(Ω;K) is
called smooth if X has the form

X = ψ(W (Φ1), . . . ,W (Φn)),

with ψ : Rn → K in�nitely often di�erentiable, Φ1, . . . ,Φn ∈ L2([0, T ];H) and

W (Φ) :=

∫ T

0

〈Φ(t), dW (t)〉, Φ ∈ L2([0, T ];H).

We denote all smooth K-valued random variables by S(K).

For X ∈ S(K) we de�ne theMalliavin derivative DX of X as the K⊗L2([0, T ];H)-valued random
variable

DX =

n∑
i=1

∂

∂xi
ψ(W (Φ1), . . . ,W (Φn))⊗ Φi.

Note that we may identify the range of D with L2(Ω× [0, T ];LHS(H;K)), so we can (and will) in-
terpret DX as a (possibly non-adapted) stochastic process (DtX)t∈[0,T ] with values in LHS(H;K).

The mapping X 7→ DX : S(K) → L2(Ω × [0, T ];LHS(H;K)) is closable ([3], Proposition 5.1),
and we call its closure D : H(K)→ L2(Ω× [0, T ];LHS(H;K)) the Malliavin derivative, where the
domain H(K) of D is a linear subspace of L2(Ω;K).

For v ∈ L2(Ω × [0, T ];H) we de�ne the Malliavin derivative in the direction v pointwise almost
everywhere on Ω as the K-valued square integrable random variable

DvX :=

∫ T

0

DtX ◦ v(t) dt.
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Remark 2.1. Intuitively, DX is the stochastic process which, when integrated with respect to W
over [0, T ], results in the random variable X. As such, DX represents the dependence of X on the
noise processW , and DvX indicates the in�nitesemal change in X if we perturbW in�nitesemally
in the direction of v. Note that this interpretation makes sense only if (DtX)t∈[0,T ] is adapted;
see however the Skorohod integral below. �

We will use the following version of the chain rule for the Malliavin derivative (which holds more
generally, see [3], Proposition 5.2): Suppose K1 and K2 are separable Hilbert spaces and assume
ϕ : K1 → K2 is Fréchet di�erentiable with uniformly bounded Fréchet derivative dϕ. Then for
X ∈ H(K1), we have ϕ(X) ∈ H(K2) and

Dϕ(X) = (dϕ(X))(DX). (7)

The adjoint operator δ : D(δ,K)→ L2(Ω;K) of D is de�ned by the duality

E〈DX,Φ〉L2([0,T ];LHS(H;K)) = E〈X, δΦ〉K ,

for X ∈ H(K) and Φ ∈ D(δ,K) ⊂ L2(Ω × [0, T ];LHS(H;K)) and is called the Skorohod integral,
also denoted by

δΦ =

∫ T

0

Φ(t) δW (t).

If Φ is a predictable process in LHS(H;K) such that

E
∫ T

0

||Φ(t)||2LHS(H;K) dt <∞,

then Φ ∈ D(δ,K) and the Skorohod integral and the Itô integral coincide ([3], Theorem 5.1):∫ T

0

Φ(t) δW (t) =

∫ T

0

Φ(t) dW (t).

We therefore have, for predictable Φ, the integration by parts formula

E〈DX,Φ〉K⊗L2([0,T ];H) = E

〈
X,

∫ T

0

Φ(t) dW (t)

〉
K

and in particular

E [DvX] = E

[
X

∫ T

0

v(s) dW (s)

]
where X ∈ H(K) and v ∈ L2(Ω× [0, T ];H) predictable.

We conclude our summary of Malliavin calculus with a commutation rule for the Malliavin deriva-
tive and the Skorohod integral (a straightforward extension to the in�nite-dimensional case of [17],
Proposition 1.3.2):

DvδΦ =

∫ T

0

〈v(t),Φ(t)〉K dt+ δ(DvΦ), (8)

which holds for (deterministic) v ∈ L2([0, T ];H) and Φ ∈ D(δ,K) such that DvΦ ∈ D(δ).

Lemma 2.2. Suppose (X(t;x))t≥0 is the solution of{
dX(t) = [AX(t) + F (X(t))] dt+G dW (t) t ∈ [0, T ]
X(0) = x,

with A the generator of a strongly continuous semigroup (S(t))t≥0, F : H → H Fréchet di�eren-
tiable, and G ∈ L(H;H).
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Then, for v ∈ L2(Ω× [0, T ];H),

DvX(t;x) =

∫ t

0

Js,tGv(s) ds, almost surely, t ∈ [0, T ]

where Js,t is de�ned by (6).

Proof: For t > 0 we have that X(t;x) ∈ H(H) by [3], Lemma 5.3. We have

DvX(t;x) = DvS(t)x+Dv

∫ t

0

S(t− s)F (X(s;x)) ds+Dv

∫ t

0

S(t− s)G dW (s).

The �rst term disappears since S(t)x is deterministic. By the chain rule of Malliavin calculus,

D

∫ t

0

S(t− s)F (X(s;x)) ds =

∫ t

0

S(t− s)dF (X(s;x))DX(s;x) ds,

and hence

Dv

∫ t

0

S(t− s)F (X(s;x)) ds

=

∫ T

0

∫ t

0

S(t− s)dF (X(s;x))DrX(s;x) ds ◦ v(r) dr

=

∫ T

0

∫ t

0

S(t− s)dF (X(s;x))DrX(s;x) ◦ v(r) dsdr

=

∫ t

0

S(t− s)dF (X(s;x))DvX(s;x) ds.

Finally by (8) for v deterministic

Dv

∫ t

0

S(t− s)G dW (s) = Dvδ(S(t− s)G1s≤t)s∈[0,T ]

=

∫ T

0

S(t− s)G1s≤tv(s) ds =

∫ t

0

S(t− s)Gv(s) ds.

Hence for simple functions v =
∑n
i=1 vi1Ei , with Ei ∈ F and vi ∈ L2([0, T ];H),

Dv

∫ t

0

S(t− s)G dW (s) =

∫ t

0

S(t− s)Gv(s) ds, almost surely. (9)

We obtain (9) for general v ∈ L2(Ω× [0, T ];H) by approximating v by simple functions.

Hence

DvX(t;x)

=

∫ t

0

S(t− s)dF (X(s;x))DvX(s;x) ds+

∫ t

0

S(t− s)Gv(s) ds a.s.,

or equivalently, using the de�nition of (Js,t)t≥s in (6),

DvX(t;x) =

∫ t

0

Js,tGv(s) ds, t ∈ [0, T ].
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Lemma 2.3. Assume Hypothesis 1.1, (A,G) is null controllable in time T > 0 and that F : H →
im (G) is Fréchet di�erentiable, with ||dF ||∞ <∞.

Then for all ξ ∈ H there exists a stochastic process v = vξ ∈ L2(Ω × [0, T ];H), adapted to
(Ft)t∈[0,T ], such that

J0,T ξ =

∫ T

0

Js,TGv(s) ds,

and there exists a constant M , independent of ξ and the initial value x of X(t;x), such that

E
∫ T

0

|v(s)|2 ds ≤M |ξ|2.

Proof: By [7], (B.26), there exists u1 ∈ L2([0, T ];H) such that

S(T )(−ξ) +

∫ T

0

S(T − s)Gu1(s) ds = 0,

and ∫ T

0

|u1(s)|2 ds = |Q−1/2
T S(T )ξ|2 ≤ ||Q−1/2

T S(T )||2|ξ|2, (10)

where QT is the controllability Gramian de�ned by (4).

Let (ζ(t))t∈[0,T ] be the solution of the pathwise inhomogeneous Cauchy problem{
ζ̇(t) = Aζ(t) + dF (X(t;x))J0,tξ +Gu1(t), t ≥ 0,
ζ(0) = 0.

(11)

Then

ζ(T ) =

∫ T

0

S(T − s)dF (X(s, x))J0,sξ ds+

∫ T

0

S(T − s)Gu1(s) ds

=

∫ T

0

S(T − s)dF (X(s, x))J0,sξ ds+ S(T )ξ = J0,T ξ.

De�ne
u2(t) := G−1dF (X(t;x))[J0,tξ − ζ(t)], t ∈ [0, T ], a.s. (12)

We see that ζ(t) also satis�es almost surely the inhomogeneous Cauchy problem{
ζ̇(t) = Aζ(t) + dF (X(t;x))ζ(t) +Gu1(t) +Gu2(t), t ≥ 0,
ζ(0) = 0,

or, using variation of constants,

ζ(t) =

∫ t

0

Js,tGv(s) ds,

where v : Ω× [0, T ]→ H is de�ned by v(t) := u1(t)+u2(t), t ∈ [0, T ]. From (5), (10), (11) and (12)

we see, using the Gronwall inequality, that E
∫ t

0
|v(s)|2 ds ≤ M |ξ|2 for some M > 0 independent

of ξ and x.

The following corollary is a direct consequence of Lemma 2.2 and Lemma 2.3.

Corollary 2.4. Under Hypothesis 1.1, if (A,G) is null controllable in time T > 0 and if F : H →
H is Fréchet di�erentiable with uniformly bounded Fréchet derivative, then, for ξ ∈ H and v = vξ
associated to ξ by Lemma 2.3, we have

dxX(T ;x)ξ = J0,T ξ =

∫ T

0

Js,TGv(s) ds = DvX(T ;x). (13)
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In (other) words: we have expressed the dependence of X(T ;x) on its initial condition x in terms
of the dependence of X(T ;x) on the noise process W .

We can now give a short proof, as in [12], of the following theorem.

Theorem 2.5. Under the conditions of Hypothesis 1.1 and if (A,G) is null controllable at time
T > 0, then the transition semigroup associated to (1) is strong Feller at time T .

Proof: Suppose for the moment ϕ ∈ C1
b (H) and F ∈ C1

b (H;H). Let (P (t))t≥0 denote the
transition semigroup associated to (1). We have, using (13), the chain rule and integration by
parts for the Malliavin derivative, that

dP (T )ϕ(x)ξ = E [dϕ(X(T ;x))J0,T ξ] = E [dϕ(X(T ;x)DvX(T ;x)]

= E [Dvϕ(X(T ;x))] = E

[
ϕ(X(T ;x))

∫ T

0

〈v(s), dW (s)〉

]

≤ ||ϕ||∞

(
E
∫ T

0

|v(s)|2 ds

)1/2

,

where v is as described in Lemma 2.3, so that E
∫ T

0
|v(s)|2 ds ≤M2|ξ|2 for some M > 0, indepen-

dent of x and ξ. Hence

||dP (T )ϕ(x)||H∗ ≤M ||ϕ||∞, for all ϕ ∈ C1
b (H), x ∈ H.

It follows that

|P (T )ϕ(x)− P (T )ϕ(y)| ≤M ||ϕ||∞|x− y|H , ϕ ∈ C1
b (H), x, y ∈ H.

We can extend this estimate to ϕ ∈ Bb(H) and Lipschitz F by approximating ϕ by a sequence
(ϕn) ⊂ C1

b (H), and F by a sequence (Fn) ⊂ C1
b (H;H) with ||dFn||∞ < [F ]Lip (see the proof of

[8], Theorem 7.1.1).

We can now establish uniqueness of invariant probability measure under these conditions (we
thank the reviewer for pointing this out).

Theorem 2.6. Under the conditions of Hypothesis 1.1 and if (A,G) is eventually null controllable,
then there exists at most one invariant probability measure for equation (1).

Proof: It is su�cient to prove that 0 ∈ supp(µ), i.e. µ(U) > 0 for all open environments U of 0
in H, for all invariant measures µ (see [6], Proposition 7.8, or [12], Corollary 3.17).

Let (X(t;x))t≥0 denote the solution of (1) with initial condition x ∈ H. By Girsanov's theorem
(see e.g. [7], Theorem 10.18) which may be applied because of Hypothesis 1.1 (v), the law of
(X(t;x))t≥0 is equivalent to the law of the solution to

dX̃(t) = AX̃(t) dt+G dW (t), X̃(0) = x. (14)

Let Bε denote the sphere of radius ε > 0 in H. Let us �x the time of null controllability of (A,G)
at T > 0, as usual. Now

P(X̃(T ;x) ∈ Bε) = P

(
S(T )x+

∫ T

0

S(T − s)GdW (s) ∈ Bε

)
.

Let Z =
∫ T

0
S(T − s)GdW (s) and note that Z ∼ N(0, QT ), with QT de�ned by (4). Let M =

im(Q
1/2
T ), and let P denote the orthogonal projection onM . Then PZ = Z, and by (3), PS(T )x =

S(T )x. Hence

P(X̃(T ) ∈ Bε) = P (P (S(T )x+ Z) ∈ Bε) = P (P (S(T )x+ Z) ∈ Bε ∩M) > 0,
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where the last inequality follows since the probability measure of Z is full on M ([6], Proposition
1.25). Hence

P(X(T ;x) ∈ Bε) > 0.

In particular, if we now consider the evolution of (X(t))t≥0 governed by

dX(t) = [AX(t) + F (X(t))] dt+G dW (t), X(0) ∼ µ,

where µ is an invariant measure for (1), then note that X(T ) ∼ µ by the de�nition of invariant
measure, and therefore, for any ε > 0,

µ(Bε) = P(X(T ) ∈ Bε) =

∫
H

P (X(T ;x) ∈ Bε) µ(dx) > 0.

3 Approximate controllability and irreducibility

Hypothesis 1.1 and the approximate controllability of (A,G) will be seen to be su�cient to prove
the irreducibility of (1).

Proposition 3.1. Suppose the assumptions of Hypothesis 1.1 hold and (A,G) is approximately
controllable in time T > 0. Then the system (2), with f = F , is approximately controllable in
time T .

Proof: Let x, z ∈ H and ε > 0. Since (A,G) is approximately controllable, there exists a control
u1 ∈ L2([0, T ];H) such that η ∈ L2([0, T ];H) de�ned by

η(t) := S(t)x+

∫ t

0

S(t− s)Gu1(s) ds (15)

satis�es |η(T )− z| < ε.

For 0 ≤ t ≤ T , choose
u2(t) := −G−1F (η(t)).

Then, for
u(t) := u1(t) + u2(t),

the solution of (2) is given by

y(t) = S(t)x+

∫ t

0

S(t− s)F (y(s)) ds+

∫ t

0

S(t− s)G(u1(s) + u2(s)) ds

= S(t)x+

∫ t

0

S(t− s)[F (y(s))− F (η(s))] ds+

∫ t

0

S(t− s)Gu1(s) ds.

Suppose (S(t)) satis�es ||S(t)|| ≤Meωt for all t ≥ 0 and some M,ω ≥ 0. Let

ζ(t) := y(t)− η(t).

Then

|e−ωtζ(t)| =
∣∣∣∣e−ωt ∫ t

0

S(t− s)[F (y(s))− F (η(s))] ds

∣∣∣∣
≤
∫ t

0

M [F ]Lip|e−ωsζ(s)| ds, t ≥ 0,

so that by Gronwall ζ ≡ 0.

Hence |y(T )− z| < ε.
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Corollary 3.2. Suppose the assumptions of Hypothesis 1.1 hold and (A,G) is approximately
controllable. Then the transition semigroup corresponding to the stochastic system (1) is irreducible
in time T .

Proof: This follows immediately from the approximate controllability proven in Proposition 3.1
and Theorem 7.4.1 in [8], which states that approximate controllability implies irreducibility.

4 Examples

In this section we will give some illustrative examples to which the results of this paper apply.

4.1 Stochastic delay di�erential equations

Consider, similar to [8], Section 10.2, a stochastic delay equation in Rd of the form
dY (t) =

(
BY (t) +

∑N
i=1BiY (t+ θi) + ϕ(Y (t), Yt)

)
dt+ ψ dW (t), t ≥ 0

Y (0) = x,
Y (θ) = f(θ), θ ∈ [−r, 0],

(16)

where N ∈ N, B,B1, . . . , BN ∈ L(Rd), −r = θ1 < θ2 < . . . < θN < 0, ψ ∈ L(Rm;Rd), (W (t))t≥0

an m-dimensional standard Brownian motion and the initial condition x ∈ Rd. The segment
process (Yt)t≥0 is de�ned by Yt(θ) := Y (t + θ) for t ≥ 0, −r ≤ θ ≤ 0, and f ∈ L2([−r, 0];Rd) is
the initial segment. The nonlinear perturbation ϕ : Rd × L2([−r, 0];Rd) → Rd is assumed to be
Lipschitz.

As explained in [7], [2], we can cast this into the in�nite dimensional framework (1) by choosing
as Hilbert space H := Rd × L2([−r, 0];Rd), and letting the closed, densely de�ned operator A,
described by

D(A) =

{(
c
y

)
∈ Rd ×W 1,2([−r, 0];Rd) : y(0) = c

}
,

A

(
c
y

)
:=

(
Bc+

∑N
i=1Biy(θi)
ẏ

)
denote the generator of a strongly continuous semigroup (S(t))t≥0. (See e.g. [5], Section 2.4.)

As nonlinear perturbation F : H → H and noise factor G ∈ L(Rm;H) we take, respectively,

F

(
c
y

)
:=

(
ϕ(c, y)

0

)
, and G :=

(
ψ
0

)
.

For convenience, we recall the following result ([8], Theorem 10.2.3). See also [18] for the null
controllability and [5], Theorem 4.2.10 for the approximate controllability.

Theorem 4.1. The pair (A,G) is null controllable for all t > r if and only if

rank

[
λI −

N∑
i=1

eλθiBi, ψ

]
= d (17)

for all λ ∈ C.

The pair (A,G) is approximately controllable for all t > r if and only if

rank

[
λI −B −

N∑
i=1

eλθiBi, ψ

]
= d, rank[B1, ψ] = d (18)
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for all λ ∈ C.

Remark 4.2. The above theorem is partly based on [18]. In this paper null controllability after
some time t > 0 is established; however from the proof in this paper it is not clear whether
null controllability holds for all t > r. This has no signi�cant consequence since, without loss of
generality, we may take r > 0 large enough so that we indeed have null controllability for all t > r.

We can now state the main result of this section.

Theorem 4.3. Suppose conditions (17) and (18) are satis�ed. Let Ṽ be a linear subspace of Rd

such that ϕ(H) ⊂ Ṽ . Suppose that a mapping ψ−1 ∈ L(Ṽ ;Rm) of ψ exists, i.e. ψψ−1v = v for

v ∈ Ṽ .

Then there exists at most one invariant probability measure for (16) on the state space H, and if
an invariant probability measure exists, it is strongly mixing.

Proof: De�ne G−1 ∈ L(Ṽ × {0};Rm) by G−1

(
v
0

)
:= ψ−1v. All the conditions of Hypothe-

ses 1.1are satis�ed, (A,G) is approximately controllable and null controllable in time T > 0, (with

T > r and V = Ṽ ×{0} ⊂ Rd×L2([−r, 0];Rd)), and by Theorem 2.6 we may deduce the uniqueness
of an invariant probability measure and the strong mixing property of such a measure.

Note that the conditions of Theorem 4.3 are not necessarily very restrictive:

Corollary 4.4. Suppose that m ≥ d and ψ ∈ L(Rm;Rd) is surjective.

Then there exists at most one invariant probability measure for (16) on the state space H, and if
it exists, it is strongly mixing.

Proof: De�ne the pseudoinverse ψ−1 by letting ψ−1v denote the element w of minimal norm
in Rm such that ψw = v. Then ψ−1 ∈ L(Rd;Rm) is a linear operator. Since m ≥ d and ψ is
surjective, we �nd that rank ψ = d and hence (17) and (18) hold. The result follows now from

Theorem 4.3, of which all conditions are satis�ed (with Ṽ = Rd).

For convenience we combine our result with a result of of [2] on the existence of invariant probability
measures.

Corollary 4.5. Suppose the solutions of (16) are bounded in probability on the state space H,
and the conditions of Theorem 4.3 hold. Then there exists a unique, strongly mixing invariant
probability measure for (16) on H.

Proof: The existence of an invariant measure under these conditions is proven in [2]. The
uniqueness follows from Theorem 4.3.

4.2 Stochastic reaction-di�usion recurrent neural networks

In [13] the following stochastic partial di�erential equation in m dimensions with delay and noise
is considered as an example of so-called recurrent neural networks.
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dyi(t) =

m∑
k=1

∂

∂ξk

(
Di

∂yi
∂ξk

)
dt+

−cihi(yi(t, ξ)) +

n∑
j=1

aijfj(yj(t, ξ))

+

n∑
j=1

bij

∫ t

−∞
κij(t− s)gj(yj(s, ξ)) ds+ Ji

 dt

+

∞∑
l=1

σil(yi(t, ξ)) dwil(t).

We consider the following variant for n neurons in one dimension:

dyi(t, ξ) = ∆yi(t, ξ) dt+

−cihi(yi(t, ξ)) +

n∑
j=1

aijfj(yj(t, ξ))

+

n∑
j=1

bij

∫ t

t−1

κij(t− s)gj(yj(s, ξ)) ds+ Ji

 dt+ (Ψi dWi(t))(ξ), (19)

where

(i) ∆ denotes the one-dimensional Laplacian d2

dξ2 on [0, π];

(ii) ci, aij , bij , Ji are constants for i = 1, . . . , n, j = 1, . . . , n;

(iii) hi, fj and gj are Lipschitz functions R→ R for i, j = 1, . . . , n;

(iv) κij ∈ L2([0, 1]) for i, j = 1, . . . , n;

(v) Ψi ∈ L(Hi, L2([0, π])), where Hi is the RKHS of the cylindrical Wiener process Wi, i =
1, . . . , n.

Let X = L2([0, π])× . . .×L2([0, π]) and let the delay semigroup (S(t)) on E2 = X×L2([−1, 0];X)
be generated by

A =

[
B 0
0 d

dσ

]
(20)

with

B =


∆ 0 . . . 0

0 ∆
. . .

...
...

. . .
. . . 0

0 . . . 0 ∆

 .
Note that there is no dependence on the past in the generator of the delay semigroup. This will
be in our advantage later on.

Denote typical elements of E2 by z =

(
u1 . . . un
v1 . . . vn

)
with ui ∈ L2([0, π]) and vi ∈ L2([−1, 0];L2([0, π])),

i = 1, . . . , n. Let ϕi : X × L2([−1, 0];X)→ L2([0, π]) be given by

ϕi(u1, . . . , un, v1, . . . , vn)[ξ]

:= −cihi(ui(ξ)) +

n∑
j=1

aijfj(uj(ξ)) +

n∑
j=1

bij

∫ 0

−1

κij(−s)gj(vj(s, ξ)) ds+ Ji,
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and de�ne F : X×L2([−1, 0];X)→ X×L2([−1, 0];X) andG ∈ L(H1×. . .×Hn;X×L2([−1, 0];X))
by

F (z) :=

(
ϕ1(z) . . . ϕn(z)

0 . . . 0

)
, z ∈ E2, and (21)

G

w1

...
wn

 :=

(
Ψ1w1 . . . Ψnwn

0 . . . 0

)
, (w1, . . . , wn) ∈ H1 × . . .×Hn. (22)

Now (19) can be written in the form (1). By classical theory on stochastic evolutions (see [7]),
there exists a unique solution to (1), with A, F and G as given in (20), (21) and (22).

We will now establish a su�cient condition for (A,G) to be eventually null controllable.

Theorem 4.6. Suppose Ψi ∈ L(Hi;H) has a bounded inverse for all i = 1, . . . , n. Then (A,G)
is null controllable for t > 1.

Proof: Since A and G are `in diagonal form' it su�ces to consider the case where n = 1, so let
Ψ ∈ L(H;X) be invertible with Ψ−1 ∈ L(X;H). It is su�cient to establish the null controllability
of (∆,Ψ) on X = L2([0, π]). Indeed, if (∆,Ψ) is null controllable, then for any t > 1 and
x ∈ X × L2([−1, 0];X) we may �nd a control which steers the �rst component of x to 0 in time
t − 1. By setting the control equal to zero after time t − 1 the translation e�ect of the delay
semigroup then ensures that x is steered to 0 in X × L2([−1, 0];X) in time t.

It remains to establish the null controllability of (∆,Ψ) on L2([0, π]). By [5], condition (4.12), this
is equivalent to the the existence of a γ(t) > 0 for all t > 0 such that∫ t

0

||Ψ∗T ∗(t− s)z||2H ds ≥ γ(t)||T ∗(t)z||2X (23)

for all z ∈ X, where (T (t))t≥0 is the semigroup generated by the Laplacian. Let (en)n∈N∪{0}
be the orthonormal base of eigenvectors of the Laplacian with Neumann boundary conditions on
X = L2([0, π]), so {

e0(ξ) = 1√
π
,

en(ξ) =
√

2
π cos(nξ), n ∈ N,

and for z ∈ X write zn := 〈z, en〉X for n ∈ N ∪ {0}. We have, using selfadjointness of (T (t))t≥0,∫ t

0

||Ψ∗T ∗(t− s)z||2H ds ≥ 1

||Ψ−1||2

∫ t

0

||T (t− s)z||2X ds

=
1

||Ψ−1||2

∫ t

0

∣∣∣∣∣
∣∣∣∣∣
∞∑
n=0

T (t− s)znen

∣∣∣∣∣
∣∣∣∣∣
2

X

ds

=
1

||Ψ−1||2

∫ t

0

[
z2

0 +

∞∑
n=1

e−2n2sz2
n

]
ds

=
1

||Ψ−1||2

[
tz2

0 +

∞∑
n=1

1

2n2
(1− e−2n2t)z2

n

]
,

which should be compared to

||T ∗(t)z||2X = z2
0 +

∞∑
n=1

e−2n2tz2
n.
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Using the basic inequality
1

a

(
1− e−at

)
≥ te−at, a, t > 0,

we �nd that (23) holds for

γ(t) =
t

||Ψ−1||2
,

which establishes the null controllability of (∆,Ψ).

Corollary 4.7. The transition semigroup corresponding to (1) with A, F and G as given
in (20), (21) and (22), is eventually strong Feller, and there exists at most one invariant probability
measure for (1).

Proof: This is an immediate corollary of the previous theorem, Theorem 2.5 and Theorem 2.6,
using the invertibility of Ψi, i = 1, . . . , n.
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