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Abstract. It is shown that for an SDE in a Hilbert space, eventual compact-
ness of the driving semigroup together with compact perturbations can be
used to establish the existence of an invariant measure.

The result is applied to stochastic functional differential equations and
the heat equation perturbed by delay and noise, which are both shown to be
driven by an eventually compact semigroup.
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1. Introduction

We consider here infinite-dimensional diffusions in a Hilbert space H described by
the differential equation{

dX(t) = [AX(t) + F (X(t))] dt+G(X(t)) dW (t), t ≥ 0,
X(0) = x,

(1.1)

with A the generator of a strongly continuous semigroup, F and G Lipschitz
functions and W a Wiener process.

For many choices of A,F and G it is impossible to obtain the exact solution
of such an equation. Therefore it is important to establish qualititative properties
of the solution on the basis of information on A, F , G and W .

One of these qualitative properties is the existence of an invariant measure:
under what conditions does a measure µ on H exist such that if the initial condition
x has distribution µ, we have that X(t) has distribution µ for all t ≥ 0.
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Often a compactness argument (Krylov-Bogoliubov) is used to establish the
existence of an invariant measure. In finite dimensions it suffices to show that the
solutions of (1.1) are bounded in probability. In infinite dimensions, due to the
absence of local compactness, we need to exploit compactness properties of the
solutions of the stochastic differential equation.

It has been shown [3] that a suitable criterion is that A generates a compact
semigroup. Together with solutions bounded in probability this suffices to prove
the existence of an invariant measure. Another approach is taken in [9], based
on hyperbolicity of the driving semigroup and small Lipschitz coefficients of the
perturbations.

The result obtained by compactness of the semigroup leads immediately to
the question whether eventual compactness of the semigroup can be used to estab-
lish existence of an invariant measure. This is an interesting question because, for
example, delay differential equations, when put in an infinite-dimensional frame-
work, possess this property (see [6]). Also in the theory of structured population
equations eventually compact semigroups appear (see e.g. [7] and [8], Section VI.1).
In [4] it is conjectured that eventual compactness should be a sufficient criterion
for the existence of an invariant measure.

In this paper we show that eventual compactness of the semigroup, together
with compact factorizations of the perturbations F and G, can indeed be used to
establish the existence of an invariant measure (Section 2). As an example, the
result is applied to a stochastic functional differential equation and the currently
very active (see eg. [11]) field of reaction diffusion equations perturbed by delayed
feedback and noise (Section 3). In Appendix A the eventual compactness of the
delay semigroup, applied to partial differential equations, is established. This is a
generalization of the well-known fact that ordinary delay differential equations are
described by eventually compact semigroups.

2. Main result

Throughout this section, we will assume that the following hypothesis holds:

Hypothesis 2.1. (i) H and U are separable Hilbert spaces and E1 and E2 are
Banach spaces;

(i) A is the generator of a strongly continuous, eventually compact semigroup
(S(t)) on H; we assume without loss of generality that S(t) is compact for
t ≥ 1;

(ii) F : H → H is globally Lipschitz and admits a factorization F = C1 ◦ Φ,
where C1 ∈ L(E1;H) is compact and Φ : H → E1;

(iii) G : H → LHS(U ;H) is globally Lipschitz and admits a factorization G(x) =
C2Ψ(x), x ∈ H, where C2 ∈ L(E2;H) is compact, and Ψ : H → LHS(U ;E2);
1

(iv) W is a cylindrical Wiener process in U ;

1Here LHS(U ; H) denotes the space of Hilbert-Schmidt operators from U into H.
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(v) (X(t, x))t≥0,x∈H is the unique mild solution ([4], Theorem 5.3.1) of the sto-
chastic differential equation{

dX(t) = (AX(t) + F (X)) dt+G(X) dW (t),
X(0) = x, x ∈ H

(vi) For all x ∈ H and ε > 0, there exists R > 0 such that for all T ≥ 1,

1
T

∫ T

0

P(|X(t, x)| ≥ R) dt < ε.

Under these assumptions, we will establish the existence of an invariant mea-
sure. First we need a couple of lemmas.

Lemma 2.2. Let E1, E2 be Banach spaces. Let (T (t)) be a strongly continuous
semigroup acting on E1 and suppose C ∈ L(E2;E1) is compact. Let

Gf :=
∫ 1

0

T (1− s)Cf(s) ds, f ∈ Lp([0, 1];E2),

with p ≥ 2. Then G ∈ L(Lp([0, 1];E2);E1) is compact.

Proof. Consider the set

V = {T (t)Ck : t ∈ [0, 1], k ∈ E2, |k| ≤ 1} .

We will show that V is relatively compact. Indeed, let (vn) be a sequence in V .
There exist sequences (tn) ⊂ [0, 1], (xn) ⊂ E2, with |xn| ≤ 1, n ∈ N, such that

vn = T (tn)Cxn, n ∈ N.

Since C is compact, there exists a subsequence (xnk
) of (xn) such that

Cxnk
→ y for some y ∈ E1, |y| ≤ ||C||. Since [0, 1] is compact, by strong continuity

of (T (t)), there exists a further subsequence (tnkl
) of (tnk

) such that T (tnkl
)y → z

with z ∈ T ([0, 1])y.
Now

|T (tnkl
)Cxnkl

− z| ≤ |T (tnkl
)Cxnkl

− T (tnkl
)y|+ |T (tnkl

)y − z|
≤ ||T (tnkl

)|||Cxnkl
− y|+ |T (tnkl

)y − z|
≤ m|Cxnkl

− y|+ |T (tnkl
)y − z| → 0

as l→∞. Here m = supt∈[0,1] ||T (t)||.
So V is relatively compact and therefore its closed convex hull K is compact

([13], Theorem 3.25).
Now define a positive measure on [0, 1] by

µf (ds) := |f(s)| ds.

Note that µf is a finite measure since, by Jensen,

µf ([0, 1]) =
∫ 1

0

|f(s)| ds ≤
(∫ 1

0

|f(s)|p ds
) 1

p

.
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Now

Gf =
∫ 1

0

T (1− s)C f(s)
|f(s)|

µf (ds),

is an integral over positive, finite measure with the integrand assuming values in
the convex set K, so

Gf ∈ µf ([0, 1])K = ||f ||Lp([0,1];E2)K.

�

We will need the following lemma.

Lemma 2.3. Let H be a separable Hilbert space. Let K ⊂ H be compact. Then
there exists a compact, self-adjoint, strictly positive definite operator T ∈ L(H)
such that

K ⊂ {Tx : |x| ≤ 1}.

Proof. The proof is from [2], Example 3.8.13(ii). Assume for simplicity we deal
with `2 and there exists a non-zero x ∈ K.

Claim.

lim
n→∞

sup
x∈K

∞∑
i=n

x2
i = 0.

Proof of claim. Suppose there exists a δ > 0 such that for all n ∈ N, there
exists xn ∈ K such that

∞∑
i=n

(xni )2 ≥ δ.

Now for fixed n pick such an xn and m ∈ N such that
∞∑
i=m

(xni )2 < δ/2.

Furthermore pick xm such that
∞∑
i=m

(xmi )2 ≥ δ.

Then
||xn − xm||2`2 ≥ ||(xn − xm)1{m,m+1,...}||2`2 > δ/2.

So the sequence (xn) does not have a Cauchy subsequence. HenceK is not compact,
which proves the claim. �

So we can find an increasing sequence (Nn)∞n=1 such that
∞∑

i=Nn

x2
i ≤ 4−n for all x ∈ K.

Let ti > 0, t2i := 2−n+1 for Nn ≤ i < Nn+1, n ∈ N, and t2i := 2 supx∈K ||x||2`2 for
1 ≤ i < N1. Define T ∈ L(H) by (Tx)i := tixi.
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Since tn ↓ 0, we see that T is compact. Furthermore, if x ∈ K, then let
y = (yi)∞i=1 ∈ `2 with yi = xi

ti
, i ∈ N. Then Ty = x, and

∞∑
i=1

y2
i =

∞∑
i=1

(
xi
ti

)2

=
N1−1∑
i=1

(
xi
ti

)2

+
∞∑
n=1

Nn+1−1∑
i=Nn

(
xi
ti

)2

with
Nn+1−1∑
i=Nn

(
xi
ti

)2

= 2n−1

Nn+1−1∑
i=Nn

x2
i ≤ 2−n−1 and

N1−1∑
i=1

(
xi
ti

)2

≤ 1
2
.

We may conclude that
∞∑
i=1

y2
i ≤

1
2

+
∞∑
n=1

2−n−1 = 1,

so y ∈ B(0, 1). It follows that K ⊂ T (B(0, 1)). �

Now consider, for x ∈ H, the stochastic variable

Yx :=
∫ 1

0

S(1− s)G(X(s, x)) dW (s).

Lemma 2.4. For all ε > 0 and r > 0, there exists a compact K(r, ε) ⊂ H such that

P (Yx ∈ K(r, ε)) > 1− ε

for all |x| ≤ r.

Proof. Recall the factorization G = C2Ψ through the Banach space E2 from Hy-
pothesis 2.1 with C2 compact. In the proof of Lemma 2.2, it is shown that if we
let

V = {S(t)C2k : t ∈ [0, 1], k ∈ E2, |k| ≤ 1} ,
and K the closed convex hull of V , then K is compact. Let T ∈ L(H), compact,
be as given by Lemma 2.3, so K ⊂ T (B(0, 1)) and since T is injective, V ⊂ K ⊂
D(T−1).

Let K(λ) := λT (B(0, 1)) for λ > 0, where B(0, 1) is the unit ball in H.
Note that

Yx =
∫ 1

0

S(1− s)CΨ(X(s, x)) dW (s) =
∫ 1

0

TT−1S(1− s)CΨ(X(s, x)) dW (s)

= T

∫ 1

0

T−1S(1− s)CΨ(X(s, x)) dW (s).

So

Yx ∈ K(λ)⇔
∫ 1

0

T−1S(1− s)CΨ(X(s, x)) dW (s) ∈ λB(0, 1).
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Hence, using the fact that T−1S(1− s)C is an operator of norm not greater
than 1 (by definition of T ),

P(Yx /∈ K(λ)) ≤ P
(∫ 1

0

T−1S(1− s)CΨ(X(s, x)) dW (s) /∈ λB(0, 1)
)

≤ 1
λ2

E

[∣∣∣∣∫ 1

0

T−1S(1− s)CΨ(X(s, x)) dW (s)
∣∣∣∣2
]

=
1
λ2

E
[∫ 1

0

∣∣T−1S(1− s)CΨ(X(s, x))
∣∣2
HS

ds

]
≤ c1
λ2

E
[∫ 1

0

|Ψ(X(s, x))|2HS ds

]
≤ c2
λ2

(1 + |x|2),

for some constants c1, c2 > 0, and where we used [4], Theorem 5.3.1 in the last
step. Now pick λ large enough such that

c2
λ2

(1 + r2) < ε.

�

Lemma 2.5. Suppose Hypothesis 2.1 is satisfied. For any ε > 0 and r > 0 there
exists a compact K(r, ε) ⊂ H such that

P(X(1, x) ∈ K(r, ε)) ≥ 1− ε for all x ∈ H with |x| ≤ r.

Proof. Note that

X(1, x) = S(1)x+
∫ 1

0

S(1− s)F (X(s, x)) ds+
∫ 1

0

S(1− s)G(X(s, x)) dW (s).

We treat the three terms separately.
Since S(1) is a compact operator, for any r > 0 there exists a compact set

K1(r) such that S(1)x ∈ K1(r) for all |x| ≤ r.
Let p ≥ 2. From [4], Theorem 5.3.1, it follows that there exists a constant

k > 0 such that

E
[∫ 1

0

|Φ(X(s, x))|p ds
]
≤ k(1 + |x|p).

Define
f : Ω× [0, 1]→ E1, f(t) := Φ(X(t, x)), t ∈ [0, 1].

Then for λ > 0,

P(|f |Lp(0,1;E1) > λ) ≤ 1
λp

E
[
|f |pLp(0,1;E1)

]
≤ k

λp
(1 + |x|p) ≤ k

λp
(1 + rp).

Pick

λ :=
(

2k
ε

(1 + rp)
)1/p

,

so that
P(|f |Lp(0,1;E1) > λ) ≤ ε/2.
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Hence, by Lemma 2.2 there exists a compact set K2(λ) = K2(r, ε) such that

P
(∫ 1

0

S(1− s)F (X(s, x)) ds ∈ K2(r, ε)
)
> 1− ε/2.

By Lemma 2.4, there exists a compact set K3(r, ε) such that

P
(∫ 1

0

S(1− s)G(X(s, x)) ds ∈ K3(r, ε)
)
> 1− ε/2.

We may conclude that

P(X(1, x) ∈ K1(r) +K2(r, ε) +K3(r, ε)) ≥ 1− ε.

�

Theorem 2.6. Suppose Hypothesis 2.1 is satisfied. Then there exists an invariant
measure for (X(t, x))t≥0.

Proof. The proof is analogous to the proof of [4], Theorem 6.1.2.
Let K(r, ε) as in Lemma 2.5. For t > 1, using Markov transition probabilities

(pt(x, dy)),

P(X(t, x) ∈ K(r, ε)) = E [p1(X(t− 1, x),K(r, ε))]

≥ E
[
p1(X(t− 1, x),K(r, ε))1{|X(t−1,x)|≤r}

]
.

By Lemma 2.5,

P(X(t, x) ∈ K(r, ε)) ≥ (1− ε)P(|X(t− 1, x)| ≤ r),

so

1
T

∫ T+1

1

P(X(t, x) ∈ K(r, ε)) dt ≥ 1− ε
T

∫ T

0

P(|X(t, x)| ≤ r) dt.

Now, using Hypothesis 2.1, (vii), take r large enough and ε small enough, to
see that the family

1
T

∫ T+1

1

pt(x, ·) dt, T ≥ 1,

is tight. By Krylov-Bogoliubov there exists an invariant measure. �

It is currently not known to us whether an invariant measure always exists if
F and G are only Lipschitz without a factorization property as in Hypothesis 2.1
(ii) and (iii).
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3. Example: stochastic evolutions with delay

Evolutions with delayed dependence have been studied for some time now. One
can think of both ordinary differential equations and partial differential equations,
perturbed by a dependence on the ‘past’ of the process, leading to functional
differential equations (see [5], [6], [10]) and partial functional differential equations
(see [14]), respectively. The latter class has attracted a lot of research activity
recently, see for example [11].

Can we establish the existence of an invariant measure for such evolutions,
perturbed by noise? In order to answer this question, we first present the abstract
framework in the style of [1].

Let X,Z be a Banach spaces. Consider the abstract differential equation with
delay 

d
dtu(t) = Bu(t) + Φut, t > 0,
u(0) = x,
u0 = f,

(3.1)

where

(i) x ∈ X;
(ii) B the generator of a strongly continuous semigroup (S(t)) in X;

(iii) D(B)
d
↪→ Z

d
↪→ X;2

(iv) f ∈ Lp([−1, 0];Z), 1 ≤ p <∞;
(v) Φ : W 1,p([−1, 0];Z)→ X a bounded linear operator3;
(vi) u : [−1,∞)→ X and for t ≥ 0, ut : [−1, 0]→ X is defined by ut(σ) = u(t+σ),

σ ∈ [−1, 0].

A classical solution of (3.1) is a function u : [−1,∞)→ X that satisfies

(i) u ∈ C([−1,∞);X) ∩ C1([0,∞);X);
(ii) u(t) ∈ D(B) and ut ∈W 1,p([−1, 0];Z) for all t ≥ 0;
(iii) u satisfies (3.1) for all t ≥ 0.

To employ a semigroup approach we introduce the Banach space

Ep := X × Lp([−1, 0];Z),

and the closed, densely defined operator in Ep,

A :=
[
B Φ
0 d

dσ

]
, D(A) =

{(
x
f

)
∈ X ×W 1,p([−1, 0];Z) : f(0) = x

}
. (3.2)

The equation (3.1) is called wellposed if for all (x, f) ∈ D(A), there exists a
unique classical solution of (3.1) that depends continuously on the initial data (in
the sense of uniform convergence on compact intervals).

2Here
d

↪→ denotes continuous and dense embedding
3Here W k,p(U ; V ) denotes the Sobolev space consisting of equivalence classes of functions map-
ping from U into V with partial derivatives up to and including k-th order in Lp(U ; V )
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It is shown in [1] that A generates a strongly continuous semigroup in Ep if
and only if (3.1) is wellposed. Furthermore, sufficient conditions on Φ are given
for this to be the case:

Hypothesis 3.1. Let St : X → Lp([−1, 0];Z) be defined by

(Stx)(τ) :=
{
S(t+ τ)x if − t < τ ≤ 0,
0 if − 1 ≤ τ ≤ −t, t ≥ 0.

Let (T0(t))t≥0 be the nilpotent left shift semigroup on Lp([−1, 0];Z). Assume that
there exists a function q : [0,∞)→ [0,∞) with limt↓0 q(t) = 0, such that∫ t

0

||Φ(Srx+ T0(r)f)|| dr ≤ q(t)
∣∣∣∣∣∣∣∣(xf

)∣∣∣∣∣∣∣∣
for all t > 0 and

(
x
f

)
∈ D(A). Furthermore suppose that either

(A) Z = X or
(B) (i) (B,D(B)) generates an analytic semigroup (S(t))t≥0 on X, and

(ii) for some δ > ω0(B) there exists ϑ < 1
p such that

D((−B + δI)ϑ)
d
↪→ Z

d
↪→ X.

Theorem 3.2. Assume Hypothesis 3.1 holds. Then (A,D(A)) is the generator of a
strongly continuous semigroup (T (t))t≥0 on Ep.

Proof. See [1], Theorem 3.26 and Theorem 3.34. �

Example. Let Φ : C([−1, 0];Z)→ X be given by

Φ(f) :=
∫ 0

−1

dη f,

where η : [−1, 0]→ L(Z;X) is of bounded variation.
Suppose either that Z = X or that (B,D(B)) satisfies the assumptions (B-i)

and (B-ii) of Hypothesis 3.1. Then the conditions of Theorem 3.2 are satisfied and
hence (A,D(A)) generates a strongly continuous semigroup (see [1], Theorem 3.29
and Theorem 3.35). �

By the following theorem, proven in Section A, we see that in many cases A
generates an eventually compact semigroup.

Theorem 3.3. Suppose Hypothesis 3.1 holds. Furthermore suppose (S(t))t≥0 is im-
mediately compact. Then (T (t))t≥0 is compact for all t > 1. If X is finite dimen-
sional, then (T (t))t≥0 is also compact at t = 1.
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3.1. Example (Functional differential equations)

A relatively easy case is now the example of a functional differential equation
perturbed by noise. In the framework introduced above, let X = Z = Rd, B ∈
L(Rd) and Φ(f) =

∫ 0

−1
dη f , with η : [−1, 0]→ L(Rd) of bounded variation.

As a special case, we can take η(σ) =
∑n
i=1H(σ − θi)Bi, where H denotes

the Heaviside step function, θi ∈ [−1, 0], and Bi ∈ L(Rd), i = 1, . . . n. Then (3.1)
becomes the delay differential equation

du

dt
= Bu(t) +

n∑
i=1

Biu(t− θi).

We can perturb the functional differential equation by noise to obtain a sto-
chastic functional differential equation of the form

du =
[
Bu(t) +

∫ 0

−1

dη ut + ϕ(u(t), ut)
]
dt+ ψ(u(t), ut) dW (t), t ≥ 0, (3.3)

where ϕ : E2 → Rd, ψ : E2 → L(Rm; Rd) are Lipschitz, and (W (t))t≥0 is an
m-dimensional standard Brownian motion.

If we define F : E2 → E2 and G : E2 → L(Rm; E2) by

F

([
v
w

])
:=
[
ϕ(v, w)

0

]
, G

([
v
w

])
:=
[
ψ(v, w)

0

]
,

[
v
w

]
∈ E2,

and A as in (3.2), then we arrive in the framework of equation (1.1) with as state
space H = E2.

Since F and G map into finite dimensional subspaces of E2, they clearly
admit a compact factorization as meant in Hypothesis 2.1. By Theorem 3.3, A
generates an eventually compact semigroup. Hence all conditions of Hypothesis 2.1
are satisfied, except possibly condition (vi), boundedness in probability.4 If this
condition is also satisfied, by Theorem 2.6 we have established the existence of an
invariant measure for (3.3) on the state space E2.

3.2. Example

Reaction diffusion equations with delayed nonlocal reaction terms are a topic of
active research in the study of biological invasion and disease spread. Can we
establish the existence of an invariant measure if we add randomness to such a
system? As an example we set out to answer this question for an equation similar
to one encountered in e.g. [11].

4Boundedness in probability has to be established for individual cases, for example, by posing
dissipativity conditions on A, F and G, see [3].
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Consider the reaction diffusion equation with delay and noise
du(t, ξ) =

[
∆ξu(t, ξ) +

∑n
i=1 ci

∂
∂ξu(t− θi, ξ) + ϕ(ut)(ξ)

]
dt

+(σ ◦ dW )(t, ξ), t ≥ 0, ξ ∈ R,
limξ→±∞ u(t, ξ) = limξ→±∞

∂u
∂ξ (t, ξ) = 0, t ≥ 0,

u(t, ξ) = f(t, ξ), t ∈ [−1, 0], ξ ∈ R,
u(0, ξ) = v(ξ), ξ ∈ R.

(3.4)
with

(i) delay parameters ci ∈ R, θi ∈ [−1, 0], i = 1, . . . , n,
(ii) initial conditions f ∈ L2([−1, 0];W 1,2(R)) and v ∈ L2(R),
(iii) Lipschitz reaction term ϕ : L2([−1, 0];W 1,2(R)) → L2(R) (possibly non-

linear and/or non-local),
(iv) ut ∈ L2([−1, 0];W 1,2(R)) denoting the segment process defined by ut(θ) =

u(t+ θ) for θ ∈ [−1, 0], t ≥ 0,
(v) (W (t))t≥0 a cylindrical Brownian motion in some Hilbert space U ,
(vi) noise factor σ ∈ LHS(U ;W 1,2(R)).

We can employ the semigroup approach discussed before by setting X :=
L2(R), Z := W 1,2(R), as state space the Hilbert space E2 = X × L2([−1, 0];Z),
with A as defined in (3.2), with

B := ∆, D(B) =
{
v ∈W 2,2(R) : lim

ξ→±∞
v(ξ) = 0, lim

ξ→±∞

∂v

∂ξ
(ξ) = 0

}
and

Φ(w) :=
n∑
i=1

ci
∂

∂ξ
w(t− θi, ξ), w ∈ L2([−1, 0];W 1,2(R)).

Then A is of the form described in Example 3. Since B generates an immedi-
ately compact semigroup (see for example [8], Exercise II.4.30(4)), it follows from
Theorem 3.3 that A generates an eventually compact semigroup.

Furthermore let

F

([
v
w

])
:=
[
ϕ(w)

0

]
,

[
v
w

]
∈ E2, and G (·) :=

[
σ
0

]
on E2.

Then (3.4) is described by (1.1) in the state space H = E2.
It remains to impose conditions on the nonlinear term F . Let us require, for

example, that ϕ : L2([−1, 0];W 1,2(R))→ L2(R) is of the form

ϕ(w) := (g ◦ h)(w),

with g : W 1,2(R)→W 1,2(R) (possibly the identity mapping), and h defined by

h(w)(ξ) :=
∫ 0

−1

∫
R
k(η, σ)ψ(w(σ, ξ − η)) dη dσ, ξ ∈ R,

where ψ ∈W 1,∞(R) with |ψ(ζ)| ≤ ||ψ̇||∞|ζ|, ζ ∈ R, and k ∈ L1(R;L2([−1, 0])).
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We will now verify that in this case

ϕ : L2([−1, 0];W 1,2(R))→W 1,2(R). (3.5)

Indeed, using Fubini, Cauchy-Schwarz and Young’s inequality for convolu-
tions,∫

R
|h(w)(ξ)|2 dξ =

∫
R

∣∣∣∣∫ 0

−1

∫
R
k(η, σ)ψ(w(σ, ξ − η)) dη dσ

∣∣∣∣2 dξ

≤ ||ψ̇||2∞
∫

R

(∫ 0

−1

∫
R
|k(η, σ)w(σ, ξ − η)| dη dσ

)2

dξ

≤ ||ψ̇||2∞
∫

R

(∫
R
||k(η, ·)||L2([−1,0])||w(·, ξ − η)||L2([−1,0]) dη

)2

dξ

≤
(
||ψ̇||∞||k||L1(R;L2([−1,0])) ||w||L2([−1,0];L2(R))

)2

.

Furthermore, using the same classic inequalities,∫
R

∣∣∣∣ ∂∂ξ h(w)(ξ)
∣∣∣∣2 dξ

=
∫

R

∣∣∣∣∫ 0

−1

∫
R
k(η, σ)

∂

∂ξ
ψ(w(σ, ξ − η)) dη dσ

∣∣∣∣2 dξ

=
∫

R

∣∣∣∣∫ 0

−1

∫
R
k(η, σ)ψ̇(w(σ, ξ − η))

∂

∂ξ
w(σ, ξ − η) dη dσ

∣∣∣∣2 dξ

≤ ||ψ̇||2∞
∫

R

(∫ 0

−1

∫
R

∣∣∣∣k(η, σ)
∂

∂ξ
w(σ, ξ − η)

∣∣∣∣ dη dσ)2

dξ

≤ ||ψ̇||2∞
∫

R

(∫
R
||k(η, ·)||L2([−1,0])

∣∣∣∣∣∣∣∣ ∂∂ξw(·, ξ − η)
∣∣∣∣∣∣∣∣
L2([−1,0])

dη

)2

dξ

≤
(
||ψ̇||∞||k||L1(R;L2([−1,0])) ||w||L2([−1,0];W 1,2(R))

)2

.

So we have h : L2([−1, 0];L2(R)) → W 1,2(R), and therefore (3.5) holds for
ϕ = g◦h. Hence in this case we may write (with some abuse of notation) ϕ = ı◦ϕ,
where ı : W 1,2(R) → L2(R) is the canonical embedding of W 1,2(R) into L2(R),
which is a compact mapping. We conclude that F admits a compact factorization.
Note that this carries over to any function ϕ that satisfies (3.5). G admits a
compact factorization as well, again using the compact embedding of W 1,2(R)
into L2(R).

Again, we may conclude from Theorem 2.6 that if the solutions of (3.4) are
bounded in probability, an invariant measure exists.
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Appendix A. Eventual compactness of the delay semigroup

The purpose of this section is to prove Theorem 3.3. We proceed as in [8], Section
VI.6. We will use the following variant of the Arzelà-Ascoli theorem.

Definition A.1. A subset Φ of C(X;Y ) is pointwise relatively compact if and only
if ∀x ∈ X, the set {f(x) : f ∈ Φ} is relatively compact in Y .

Theorem A.2 (vector valued Arzelà-Ascoli, [12], Theorem 47.1). Let X be a com-
pact Hausdorff space and Y a metric space. Then a subset Φ of C(X;Y ) is rela-
tively compact if and only if it is equicontinuous and pointwise relatively compact.

Lemma A.3. Suppose (S(t))t≥0 is immediately compact. Then R(λ,A)T (1) is com-
pact for all λ ∈ ρ(A).

Proof. According to [1], Proposition 3.19, we have the following expression for the
resolvent R(λ,A):

R(λ,A) =
[
R(λ,B + Φλ) R(λ,B + Φλ)ΦR(λ,A0)
ελR(λ,B + Φλ) [ελR(λ,B + Φλ)Φ + I]R(λ,A0)

]
, λ ∈ ρ(A),

(A.1)
where, for λ ∈ C, Φλ ∈ L(X) is given by

Φλx := Φ(eλ·x), x ∈ X,

ελ is the function
ελ(s) := eλs, s ∈ [−1, 0].

and A0 is the generator of the nilpotent left-shift semigroup on Lp([−1, 0];X).
Let

π1 : X × Lp([−1, 0];Z)→ X

and
π2 : X × Lp([−1, 0];Z)→ Lp([−1, 0];Z)

denote the canonical projections on X and Lp([−1, 0];Z), respectively.
Lemma 4.5 and Lemma 4.9 in [1] state that the operator R(λ,B + Φλ) is

compact for all λ ∈ ρ(A). Therefore, using (A.1)

π1R(λ,A)T (1) =
[
R(λ,B + Φλ) R(λ,B + Φλ)ΦR(λ,A0)

]
T (1) (A.2)

is compact.
We can therefore restrict our attention to

π2R(λ,A)T (1) : X × Lp([−1, 0];Z)→ Lp([−1, 0];Z).

Denote ϕ :=
(
x
f

)
where x ∈ X and f ∈ Lp([−1, 0];Z). Note that

d

dσ
π2R(λ,A)T (1)ϕ = π2AR(λ,A)T (1)ϕ,
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Hence, using Hölder, there exists some constant M > 0 such that for all t0, t1 ∈
[−1, 0],

||π2R(λ,A)T (1)ϕ(t1)− π2R(λ,A)T (1)ϕ(t0)||Z

=
∣∣∣∣∣∣∣∣∫ t1

t0

[
d

dσ
π2R(λ,A)T (1)ϕ

]
(σ) dσ

∣∣∣∣∣∣∣∣
Z

=
∣∣∣∣∣∣∣∣∫ t1

t0

[π2AR(λ,A)T (1)ϕ] (σ) dσ
∣∣∣∣∣∣∣∣
Z

≤
∫ t1

t0

||[π2AR(λ,A)T (1)ϕ] (σ)||Z dσ

≤ |t1 − t0|1/q ||π2AR(λ,A)T (1)ϕ||Lp([−1,0];Z)

≤M |t1 − t0|1/q ||ϕ||Ep .

Here q > 1 is such that 1
q + 1

p = 1.
So

C := {π2R(λ,A)T (1)ϕ : ϕ ∈ Ep, ||ϕ||Ep ≤ 1} ⊂ C([−1, 0];Z)

is equicontinuous.
Furthermore note that

[π2R(λ,A)T (1)ϕ] (σ)

= [π2T (1)R(λ,A)ϕ] (σ) (commutativity of R(λ,A) and T (1))

= [π2T (1 + σ)R(λ,A)ϕ] (0) (translation property of (T (t))t≥0)

= [π2R(λ,A)T (1 + σ)ϕ] (0) (commutativity)

= π1R(λ,A)T (1 + σ)ϕ (R(λ,A) maps to domain A).

Again using (A.1) and the fact that R(λ,B + Φλ) is compact, we find that
C is pointwise relatively compact. By the vector-valued Arzelà-Ascoli theorem,
Theorem A.2, we find that C is relatively compact in C([−1, 0];Z) and hence
relatively compact in Lp([−1, 0];Z).

From this we conclude that π2R(λ,A)T (1) is compact and combining this
with (A.2), R(λ,A)T (1) is compact. �

We may now conclude that (T (t))t≥0 is eventually compact:

Theorem A.4. Suppose Hypothesis 3.1 holds. Furthermore suppose (S(t))t≥0 is
immediately compact. Then (T (t))t≥0 is compact for all t > 1. If X is finite di-
mensional, then (T (t))t≥0 is also compact at t = 1.

Proof. By [8], Lemma II.4.28, it is sufficient to show that (T (t)) is eventually norm
continuous for t > 1, and that R(λ,A)T (1) is compact for some λ ∈ ρ(A).
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Now by [1], Lemma 4.5, (T (t)) is norm continuous for t > 1 (using that (S(t))
is immediately compact and hence immediately norm continuous). Furthermore by
Lemma A.3, R(λ,A)T (1) is compact for all λ ∈ ρ(A).

For the finite dimensional case, see [6]. �
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