Abstract. Denote the loss return on the equity of a financial institution as X and that of the entire market as Y. For a given very small value of $p > 0$, the marginal expected shortfall (MES) is defined as $E(X \mid Y > Q_Y(1 - p))$, where $Q_Y(1 - p)$ is the $(1 - p)$-th quantile of the distribution of Y. The MES is an important factor when measuring the systemic risk of financial institutions. For a wide nonparametric class of bivariate distributions, we construct an estimator of the MES and establish the asymptotic normality of the estimator when $p \rightarrow 0$, as the sample size $n \rightarrow \infty$. Since we are in particular interested in the case $p = O(1/n)$, we use extreme value techniques for deriving the estimator and its asymptotic behavior. The finite sample performance of the estimator and the adequacy of the limit theorem are shown in a detailed simulation study. We also apply our method to estimate the MES of three large U.S. investment banks.

Running title. Marginal expected shortfall.

Key words and phrases. Asymptotic normality, conditional tail expectation, extreme values.
1 Introduction

An important factor in constructing a systemic risk measure for the financial industry is the contribution of a financial institution to a systemic crisis measured by the Marginal Expected Shortfall (MES). The MES of a financial institution is defined as the expected loss on its equity return conditional on the occurrence of an extreme loss in the aggregated return of the financial sector. Denote the loss of the equity return of a financial institution and that of the entire market as X and Y, respectively. Then the MES is defined as $E(X \mid Y > t)$, where t is a high threshold such that $p = P(Y > t)$ is extremely small. In other words, the MES at probability level p is defined as

$$MES(p) = E(X \mid Y > Q_Y(1 - p)),$$

where Q_Y is the quantile function of Y. Notice that in applications the probability p is at an extremely low level that can be even lower than $1/n$, where n is the sample size of historical data that are used for estimating the MES.

It is the goal of this paper to establish a novel estimator of $MES(p)$ and to unravel its asymptotic behavior. The main result establishes the asymptotic normality of our estimator for a large class of bivariate distributions, which makes statistical inference for the MES feasible. We also show through a simulation study that the estimator performs well and that the limit theorem provides an adequate approximation for finite sample sizes.

The MES has been studied under the name “Conditional Tail Expectation” (CTE, or TCE) in statistics and actuarial science. The definition of CTE in a univariate context is the same as that of the tail value at risk. Mathematically, it is given by $E(X \mid X > Q_X(1 - p))$ where Q_X is the quantile function of X. In case X has a continuous distribution, this is also called the expected shortfall. Compared to the MES, it can be viewed as the special case that $Y = X$. The concept of CTE has been defined more generally in a multivariate setup. It is possible to have the conditioning event defined by another, related random variable Y exceeding its high quantile. In that case, the CTE coincides with the MES. A few studies show how to calculate the CTE when the joint distribution of (X, Y) follows specific parametric models. For example, Landsman and Valdez (2003) and Kostadinov (2006) deal with elliptical distributions with heavy-tailed marginals. Cai and Li (2005) studies the CTE for multivariate phase-type distributions. Vernic (2006) considers skewed-normal distributions. Compared to these studies, our approach

\footnote{In Acharya et al. (2012), the probability of such an extreme tail event is specified as “that happen once or twice a decade (or less)”, whereas the estimation is based on daily data from one year.}
does not impose any parametric structure on \((X, Y)\). A comparable result in the literature
is the approach in Joe and Li (2011), where under multivariate regular variation, a formula
for calculating the CTE is provided. The multivariate regularly varying distributions form a
subclass of our model. Note that we do not make any assumption on the marginal distribution
of \(Y\). It should be emphasized, however, that we focus on the statistical problem of estimating
the MES and studying the performance of the estimator in contrast to these papers where (only)
probabilistic properties of the MES are studied.

In Acharya et al. (2012) an estimator for the MES is provided assuming a specific linear
relationship between \(X\) and \(Y\). The estimation procedure there can be seen as a special case
of the present one. A similar setting has been adopted in Brownlees and Engle (2012), where
a nonparametric kernel estimator of the MES is proposed. Such a kernel estimation method,
however, performs well only if the threshold for defining a systemic crisis is not too high: the
tail probability level \(p\) should be substantially larger than \(1/n\). Such a method cannot handle
extreme events, that is \(p < 1/n\), which is particularly required for systemic risk measures.

The paper is organized as follows. Section 2 provides the main result: asymptotic normality
of the estimator. In Section 3, a simulation study shows the good performance of the estimator.
An application on estimating the MES for U.S. financial institutions is given in Section 4. The
proofs are deferred to Section 5.

2 Main Results

Let \((X, Y)\) be a random vector with a continuous distribution function \(F\). Denote the
marginal distribution functions as \(F_1(x) = F(x, \infty)\) and \(F_2(y) = F(\infty, y)\) with corresponding
tail quantile functions given by \(U_j = \left(\frac{1}{1-F_j}\right)^{-1}, j = 1, 2\), where \(\leftarrow\) denotes the left-continuous
inverse. Then the MES at a probability level \(p\) can be written as

\[
\theta_p := E(X \mid Y > U_2(1/p)).
\]

The goal is to estimate \(\theta_p\) based on independent and identically distributed (i.i.d.) observations,
\((X_1, Y_1), \ldots, (X_n, Y_n)\) from \(F\), where \(p = p(n) \to 0\) as \(n \to \infty\).

We adopt the bivariate EVT framework for modeling the tail dependence structure of \((X, Y)\).
Suppose for all \((x, y) \in [0, \infty]^2 \setminus \{(+\infty, +\infty)\}\), the following limit exists:

\[
\lim_{t \to \infty} tP(1 - F_1(X) \leq x/t, 1 - F_2(Y) \leq y/t) =: R(x, y).
\]
The function \(R \) completely determines the so-called stable tail dependence function \(l \), as for all \(x, y \geq 0 \),

\[
l(x, y) = x + y - R(x, y);
\]

see Drees and Huang (1998); Beirlant et al. (2004, Chapter 8.2).

For the marginal distributions, we assume that only \(X \) follows a distribution with a heavy right tail: there exists \(\gamma_1 > 0 \) such that for \(x > 0 \),

\[
\lim_{t \to \infty} \frac{U_1(tx)}{U_1(t)} = x^{\gamma_1}.
\]

(2)

Then it follows that \(1 - F_1 \) is regularly varying with index \(-\frac{1}{\gamma_1}\) and \(\gamma_1 \) is the extreme value index.

We first focus on \(X \) being positive, then we consider \(X \in \mathbb{R} \). Throughout, there is no assumption, apart from continuity, on the marginal distribution of \(Y \).

2.1 \(X \) Positive

Assume \(X \) takes values in \((0, \infty)\). The following limit result gives an approximation for \(\theta_p \).

Proposition 1. Suppose that (1) and (2) hold with \(0 < \gamma_1 < 1 \). Then,

\[
\lim_{p \to 0} \frac{\theta_p}{U_1(1/p)} = \int_0^\infty R \left(x^{-1/\gamma_1}, 1 \right) dx.
\]

In Joe and Li (2011, Theorem 2.4), this result is derived under the stronger assumption of multivariate regular variation.

Next, we construct an estimator of \(\theta_p \) based on the limit given in Proposition 1. Let \(k \) be an intermediate sequence of integers, that is, \(k \to \infty, k/n \to 0, \) as \(n \to \infty \). By Proposition 1 and a strengthening of (2) (see condition (b) below), we have that as \(n \to \infty \),

\[
\theta_p \sim \frac{U_1(1/p)}{U_1(n/k)} \theta_{\frac{k}{n}} \sim \left(\frac{k}{np} \right)^{\gamma_1} \theta_{\frac{k}{n}}.
\]

(3)

For estimating \(\theta_p \), it thus suffices to estimate \(\gamma_1 \) and \(\theta_{\frac{k}{n}} \).

We estimate \(\gamma_1 \) with the Hill (1975) estimator:

\[
\hat{\gamma}_1 = \frac{1}{k_1} \sum_{i=1}^{k_1} \log X_{n-i+1,n} - \log X_{n-k_1,n},
\]

(4)

where \(k_1 \) is another intermediate sequence of integers and \(X_{i,n}, \ i = 1, \ldots, n \) is the \(i \)-th order statistic of \(X_1, \ldots, X_n \).
By regarding the \((n-k)\)-th order statistic \(Y_{n-k,n}\) of \(Y_1, \ldots, Y_n\) as an estimator of \(U_2(n/k)\), we construct a nonparametric estimator of \(\theta_{k/n}\) which is the average of the selected \(X_i\) corresponding to the highest \(k\) values of \(Y\):

\[
\hat{\theta}_{k/n} = \frac{1}{k} \sum_{i=1}^{n} X_i I(Y_i > Y_{n-k,n}).
\]

(5)

Combining (3), (4) and (5), we estimate \(\theta_p\) by

\[
\hat{\theta}_p = \left(\frac{k}{np} \right)^{\gamma_1} \hat{\theta}_{k/n}.
\]

(6)

We prove the asymptotic normality of \(\hat{\theta}_p\) under the following conditions.

(a) There exist \(\beta > \gamma_1\) and \(\tau < 0\) such that, as \(t \to \infty\),

\[
\sup_{0 < \tau' < \infty, 1/2 < \gamma < 2} \frac{|tP(1 - F_1(X) < x/t, 1 - F_2(Y) < y/t) - R(x, y)|}{x^{\beta} \wedge 1} = O(t^\gamma).
\]

(b) There exist \(\rho_1 < 0\) and an eventually positive or negative function \(A_1\) with \(\lim_{t \to \infty} A_1(t) = 0\) such that

\[
\lim_{t \to \infty} \frac{U_1(tx)/U_1(t) - x^{\gamma_1}}{A_1(t)} = x^{\gamma_1} \frac{xp_1 - 1}{\rho_1}.
\]

As a consequence, \(|A_1|\) is regularly varying with index \(\rho_1\). Conditions (a) and (b) are natural second-order strengthenings of (1) and (2), respectively. We further require the following conditions on the intermediate sequences \(k_1\) and \(k\).

(c) As \(n \to \infty\), \(\sqrt{k_1} A_1(n/k_1) \to 0\).

(d) As \(n \to \infty\), \(k = O(n^\alpha)\) for some \(\alpha < \min\left(\frac{-2 \pi}{-2 \pi + 1}, \frac{2 \gamma \rho_1}{2 \gamma \rho_1 + \rho_1 - 1}\right)\).

To characterize the limit distribution of \(\hat{\theta}_p\), we define a mean zero Gaussian process \(W_R\) on \([0, \infty]^2 \setminus \{\infty, \infty\}\) with covariance structure

\[
E(W_R(x_1, y_1)W_R(x_2, y_2)) = R(x_1 \wedge x_2, y_1 \wedge y_2),
\]

i.e., \(W_R\) is a Wiener process. Set

\[
\Theta = (\gamma_1 - 1)W_R(\infty, 1) + \left(\int_0^\infty R(s, 1)ds^{-\gamma_1}\right)^{-1} \int_0^\infty W_R(s, 1)ds^{-\gamma_1},
\]

and

\[
\Gamma = \gamma_1 \left(-W_R(1, \infty) + \int_0^1 s^{-1} W_R(s, \infty)ds\right).
\]

It will be shown (see Proposition 3 and (24)) that \(\hat{\theta}_{k/n}\) and \(\gamma_1\) are asymptotically normal with \(\Theta\) and \(\Gamma\) as limit, respectively. The following theorem gives the asymptotic normality of \(\hat{\theta}_p\).
Theorem 1. Suppose conditions (a)–(d) hold and $\gamma_1 \in (0, 1/2)$. Assume $d_n := \frac{k}{np} \geq 1$ and $r := \lim_{n \to \infty} \frac{V_k \log d_n}{\sqrt{k_i}} \in [0, \infty]$. If $\lim_{n \to \infty} \frac{\log d_n}{\sqrt{k_i}} = 0$, then, as $n \to \infty$,

$$\min \left(\sqrt{\frac{k_i}{\log d_n}} \right) \left(\frac{\hat{\theta}_p}{\theta_p} - 1 \right) \xrightarrow{d} \begin{cases} \Theta + r\Gamma, & \text{if } r \leq 1, \\ \frac{1}{r} \Theta + \Gamma, & \text{if } r > 1, \end{cases}$$

where $\text{Var}(\Theta) = (\gamma_1^2 - 1) - b^2 \int_0^\infty R(s, 1)ds^{-2\gamma_1}$, $\text{Var}(\Gamma) = \gamma_1^2$ and $\text{Cov}(\Gamma, \Theta) = \gamma_1(1 - \gamma_1 + b)R(1, 1) - \gamma_1 \int_0^1 ((1 - \gamma_1) + bs^{-\gamma_1}(1 - \gamma_1 - \gamma_1 \ln s)) R(s, 1)s^{-1}ds$ with $b = \left(\int_0^\infty R(s, 1)ds^{-\gamma_1} \right)^{-1}$.

2.2 X Real

In this section, X takes values in \mathbb{R}, that is, we do not restrict X to be positive. Define $X^+ = \max(X, 0)$ and $X^- = X - X^+$. Besides the conditions of Theorem 1, we require two more conditions:

(e) $E |X^-|^{1/\gamma_1} < \infty$;

(f) As $n \to \infty$, $k = o \left(p^{2r(1-\gamma_1)} \right)$.

It can be shown that condition (e), together with (a), ensure that $\theta_p \sim E(X^+ | Y > U_2(1/p))$, as $p \downarrow 0$. Therefore, we estimate θ_p with

$$\hat{\theta}_p = \left(\frac{k}{np} \right)^{\frac{\gamma_1}{2}} \frac{1}{k} \sum_{i=1}^n X_i I(X_i > 0, Y_i > Y_{n-k,n}),$$

(7)

with γ_1 as in Section 2.1. Observe that when X is positive, this definition coincides with that in (6). As stated in the following theorem, the asymptotic behavior of the estimator remains the same as that for positive X.

Theorem 2. Under the conditions of Theorem 1 and conditions (e) and (f), as $n \to \infty$,

$$\min \left(\sqrt{\frac{k_i}{\log d_n}} \right) \left(\frac{\hat{\theta}_p}{\theta_p} - 1 \right) \xrightarrow{d} \begin{cases} \Theta + r\Gamma, & \text{if } r \leq 1, \\ \frac{1}{r} \Theta + \Gamma, & \text{if } r > 1, \end{cases}$$

where r, Θ and Γ are defined as in Theorem 1.

3 Simulation Study

In this section, a simulation and comparison study is implemented to investigate the finite sample performance of our estimator. We generate data from three bivariate distributions.
A transformed Cauchy distribution on \((0, \infty)^2\) defined as
\[
(X, Y) = \left(|Z_1|^{2/5}, |Z_2| \right),
\]
where \((Z_1, Z_2)\) is a standard Cauchy distribution on \(\mathbb{R}^2\) with density
\[
\frac{1}{\pi} \left(1 + x^2 + y^2 \right)^{-3/2}.
\]
It follows that \(\gamma_1 = 2/5\) and \(R(x, y) = x + y - \sqrt{x^2 + y^2}, x, y \geq 0\). It can be shown that this distribution satisfies conditions (a) and (b) with \(\tau = -1, \beta = 2,\) and \(\rho_1 = -2\). We shall refer to this distribution as “transformed Cauchy distribution (1)”.

A transformed Cauchy distribution on \((0, \infty)^2\) with density
\[
f(x, y) = \frac{2}{\pi} \left(1 + \frac{x^2 + y^2}{3} \right)^{-5/2}, \quad x, y > 0.
\]
We have \(\gamma_1 = 1/3, R(x, y) = x/2 + y - \sqrt{x^2/4 + y}, \tau = -1/3, \beta = 4/3\) and \(\rho_1 = -2/3\).

A transformed Cauchy distribution on the whole \(\mathbb{R}^2\) defined as
\[
(X, Y) = \left(Z_1^{2/5} I(Z_1 \geq 0) + Z_1^{1/5} I(Z_1 < 0), Z_2 I(Z_1 \geq 0) + Z_2^{1/3} I(Z_1 < 0) \right).
\]
We have \(\gamma_1 = 2/5, R(x, y) = x/2 + y - \sqrt{x^2/4 + y}, \tau = -1, \beta = 2,\) and \(\rho_1 = -2\). We shall refer to this distribution as “transformed Cauchy distribution (2)”.

We draw 500 samples from each distribution with sample sizes \(n = 2,000\) and \(n = 5,000\). Based on each sample, we estimate \(\theta_p\) for \(p = 1/500, 1/5,000\) or \(1/10,000\).

Besides the estimator given by (7), we construct two other estimators. Firstly, for \(np \geq 1\), an empirical counterpart of \(\theta_p\), given by
\[
\hat{\theta}_{emp} = \frac{1}{[np]} \sum_{i=1}^{n} X_i I(Y_i > Y_{n-[np],n}),
\]
is studied, where \([\cdot]\) denotes the integer part. Secondly, exploiting the relation in Proposition 1 and using the empirical estimator of \(R\) given by \(\hat{R}(x, y) = \frac{1}{k} \sum_{i=1}^{n} I(X_i > X_{n-[kx],n}, Y_i > Y_{n-[ky],n})\) and the Weissman (1978) estimator of \(U_1(1/p)\) given by \(\hat{U}_1(1/p) = d_n X_{n-k,n}\), we define an alternative EVT estimator as
\[
\hat{\theta}_p = - \hat{U}_1(1/p) \int_0^\infty \hat{R}(x, 1) dx^{-\hat{\gamma}_1}
= d_n^{\hat{\gamma}_1} X_{n-k,n} \frac{1}{k} \sum_{i=1}^{n} I(Y_i > Y_{n-k,n}) \left(\frac{n - \text{rank}(X_i) + 1}{k} \right)^{-\hat{\gamma}_1}.
\]
Figure 1: Boxplots on ratios of estimates and true values. Each plot is based on 500 samples with sample size \(n = 2,000 \) or 5,000 from the transformed Cauchy distributions (1), (2) or Student-\(t_3 \) distribution. The estimators are \(\hat{\theta}_p \) of (7), \(\hat{\theta}_p \) of (9) and \(\hat{\theta}_{\text{emp}} \) of (8): \(p = 1/500 \) (\(p_1 \)), 1/5,000 (\(p_2 \)) and 1/10,000 (\(p_3 \)).

The comparison of the three estimators is shown in Figure 1, where we present boxplots of the ratios of the estimates and the true values. For all three distributions, the empirical estimator
underestimates the MES and is consistently outperformed by the EVT estimators. Additionally, it is not applicable for $p < 1/n$. The two EVT estimators, $\hat{\theta}_p$ and $\tilde{\theta}_p$, both perform well. Their behavior is similar and remains stable when p changes from $1/500$ to $1/10,000$. The results for the transformed Cauchy distribution (1) are the best among the three distributions, as the medians of the ratios are closest to one and the variations are smallest.

Next, we investigate the normality of the estimator, $\hat{\theta}_p$, with $p = 1/n$. For $r < \infty$, the asymptotic normality of $\hat{\theta}_p$ in Theorem 1 can be expressed as $\sqrt{k} \left(\hat{\theta}_p - \frac{1}{p} \right) \overset{d}{\rightarrow} \Theta + r\Gamma$, or equivalently,

$$\sqrt{k} \log \frac{\hat{\theta}_p}{\sigma_p} \overset{d}{\rightarrow} \Theta + r\Gamma.$$

Notice that the limit distribution is a centered normal distribution. Write $\sigma_p^2 = \frac{1}{k} \text{Var}(\Theta + r\Gamma)$ with $r = \sqrt{k} \log \frac{\hat{\theta}_p}{\sigma_p}$. We compare the distribution of $\log \hat{\theta}_p$, with the limit distribution $N(0, \sigma_p^2)$. Table 1 reports the standardized mean of $\log \hat{\theta}_p$, i.e., the average value divided by σ_p, and between brackets, the ratio of the “sample” standard deviation and σ_p. As indicated by the numbers, the mean and standard deviation of $\log \hat{\theta}_p$ are both close to that of the limit distribution.

<table>
<thead>
<tr>
<th></th>
<th>$n = 2,000$</th>
<th>$n = 5,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 1/2,000$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transformed Cauchy distribution (1)</td>
<td>0.152 (1.027)</td>
<td>0.107 (1.054)</td>
</tr>
<tr>
<td>Student- t_3 distribution</td>
<td>0.232 (0.929)</td>
<td>0.148 (0.964)</td>
</tr>
<tr>
<td>Transformed Cauchy distribution (2)</td>
<td>-0.147 (1.002)</td>
<td>-0.070 (1.002)</td>
</tr>
</tbody>
</table>

The numbers are the standardized mean of $\log \hat{\theta}_p$ and between brackets, the ratio of the standard deviation and σ_p, based on 500 estimates with $n = 2,000$ or $5,000$ and $p = 1/n$.

After the numerical assessment on the parameters, we illustrate the normality of $\log \hat{\theta}_p$. Figure 2 shows the densities of the $N(0, \sigma_p^2)$-distribution and the histograms of $\log \hat{\theta}_p$, based on 500 estimates. The normality of the estimates is supported by the large overlap between the histograms and the areas under the density curves. Hence we conclude that the limit theorem provides an adequate approximation for finite sample sizes.
Figure 2: Histograms of $\log \hat{\theta}_p$ for $p = 1/n$, based on 500 samples with sample size $n = 2,000$ or 5,000 from the transformed Cauchy distributions (1), (2) or Student-t_3 distribution. The choices of k and k_1 are the same as in Figure 1. The curves are the densities of the $N(0, \sigma_p^2)$-distribution.

4 Application

In this section, we apply our estimation method to estimate the MES for some financial institutions. We consider three large investment banks in the U.S., namely, Goldman Sachs (GS),
Morgan Stanley (MS) and T. Rowe Price (TROW), all of which have a market capitalization greater than 5 billion USD as of the end of June 2007. The dataset consists of the loss returns (i.e., minus log returns) on their equity prices at a daily frequency from July 3, 2000 to June 30, 2010. Moreover, for the same time period, we extract daily loss returns of a value weighted market index aggregating three markets: NYSE, AMES and Nasdaq. We use our method to estimate the MES, $E(X \mid Y > U_2(1/p))$, where X and Y refer to the daily loss returns of a bank equity and the market index, respectively and $p = 1/n = 1/2513$, that corresponds to a once per decade systemic event.

Figure 3: The Hill estimates of the extreme value indices of the daily loss returns on the three equities.

Since X may take negative values (i.e. positive returns of the equities of the banks), it is necessary to apply the estimator for the general case as defined in (7). For that purpose, we first verify two of the conditions required for the procedure. First of all, the assumption that $\gamma_1 < 1/2$

2The choice of the banks, data frequency and time horizon follows the same setup as in Brownlees and Engle (2012).
is confirmed by the plot of the Hill estimates in Figure 3. Secondly, since the estimation relies on the approximation of $\theta_p \sim E(X^+ \mid Y > U_2(1/p))$, it is important to check that high values of Y do not coincide with negative values of X, generally. Intuitive empirical evidence for this is presented in Figure 4. It plots the loss returns of the equity prices against the market index. The horizontal lines indicate the 50-th largest loss of the index. As one can see, from the upper parts of the plots, the largest 50 losses of the index are mostly associated with losses ($X > 0$).

![Plot of Hill estimates](image)

Figure 4: The points are the daily loss returns of the three equity prices and the market index. The horizontal lines indicate the 50-th largest loss of the market index. The vertical lines, at 0, distinguish the occurrence of losses and profits.

Hence, we can apply our method to obtain the estimates of γ_1 and $MES(p) = \theta_p$ for the three banks, see Table 2. It follows that in case of a once per decade market crisis, we estimate

<table>
<thead>
<tr>
<th>Bank</th>
<th>$\hat{\gamma}_1$</th>
<th>$\hat{\theta}_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldman Sachs (GS)</td>
<td>0.386</td>
<td>0.301</td>
</tr>
<tr>
<td>Morgan Stanley (MS)</td>
<td>0.473</td>
<td>0.593</td>
</tr>
<tr>
<td>T. Rowe Price (TROW)</td>
<td>0.379</td>
<td>0.312</td>
</tr>
</tbody>
</table>

Here $\hat{\gamma}_1$ is computed by taking the average of the Hill estimates for $k_1 \in [70, 90]$. $\hat{\theta}_p$ is given in (7) with $n = 2513$, $k = 50$, and $p = 1/n = 1/2513$.

three banks, see Table 2. It follows that in case of a once per decade market crisis, we estimate
that on average the equity prices of Goldman Sachs and T. Rowe Price drop about 25% and
Morgan Stanley falls even about 45% on that day.

5 Proofs

Proof of Proposition 1 Recall that for a non-negative random variable Z,

$$E(Z) = \int_0^\infty P(Z > x)dx.$$

Hence,

$$\frac{\theta_p}{U_1(1/p)} = \int_0^\infty \frac{1}{p} P(X > x, Y > U_2(1/p)) \frac{dx}{U_1(1/p)}$$

$$= \int_0^\infty \frac{1}{p} P(X > U_1(1/p)x, Y > U_2(1/p))dx. \quad (10)$$

The limit relations (1) and (2) implies that

$$\lim_{p \to 0} \frac{1}{p} P(X > U_1(1/p)x, Y > U_2(1/p)) = R(x^{-1/\gamma_1}, 1).$$

Hence, we only have to prove that the integral in (10) and the limit procedure $p \to 0$ can be
interchanged. This is ensured by the dominated convergence theorem as follows. Notice that for
$x \geq 0$,

$$\frac{1}{p} P(X > U_1(1/p)x, Y > U_2(1/p)) \leq \min \left(1, \frac{1}{p} (1 - F_1(U_1(1/p)x)) \right).$$

For $0 < \varepsilon < 1/\gamma_1 - 1$, there exists $p(\varepsilon)$ (see Proposition B.1.9.5 in de Haan and Ferreira (2006))
such that for all $p < p(\varepsilon)$ and $x > 1$,

$$\frac{1}{p} (1 - F_1(U_1(1/p)x)) \leq 2x^{-1/\gamma_1 + \varepsilon}.$$

Write

$$h(x) = \begin{cases} 1, & 0 \leq x \leq 1; \\ 2x^{-1/\gamma_1 + \varepsilon}, & x > 1. \end{cases}$$

Then h is integrable and $\frac{1}{p} P(X > U_1(1/p)x, Y > U_2(1/p)) \leq h(x)$ on $[0, \infty)$ for $p < p(\varepsilon)$. Hence
we can apply the dominated convergence theorem to complete the proof of the proposition. \Box

Next, we prove Theorem 1. The general idea of the proof is described as follows. It is clear
that the asymptotic behavior of $\hat{\theta}_p$ results from that of $\hat{\gamma}_1$ and $\hat{\theta}_{\hat{\gamma}}$. The asymptotic normality of
\(\hat{\gamma}_1 \) is well-known, see, e.g., de Haan and Ferreira (2006). To prove the asymptotic normality of \(\hat{\theta}_{kn} \), write

\[
\hat{\theta}_{kn} = \frac{1}{k} \sum_{i=1}^{n} X_i I(Y_i > U_2(n/(ke_n))),
\]

where \(e_n = \frac{n}{k} (1 - F_2(Y_{n-k,n})) \xrightarrow{P} 1 \), as \(n \to \infty \). Hence, with denoting \(\hat{\theta}_{kn} := \frac{1}{k} \sum_{i=1}^{n} X_i I(Y_i > U_2(n/(ky_n))) \), we first investigate the asymptotic behavior of \(\hat{\theta}_{kn} \) for \(y \in [1/2, 2] \). Then, by applying the result for \(y = e_n \) and considering the asymptotic behavior of \(e_n \), we obtain the asymptotic normality of \(\hat{\theta}_{kn} \). Lastly, together with the asymptotic normality of \(\hat{\gamma}_1 \), we prove that of \(\hat{\theta}_p \).

To obtain the asymptotic behavior of \(\hat{\theta}_{kn} \), we introduce some new notation and auxiliary lemmas. Write \(R_n(x, y) := \frac{2}{k} P(1 - F_1(X) < kx/n, 1 - F_2(Y) < ky/n) \). A pseudo non-parametric estimator of \(R_n \) is given as \(T_n(x, y) := \frac{1}{k} \sum_{i=1}^{n} I(1 - F_1(X_i) < kx/n, 1 - F_2(Y_i) < ky/n) \).

The following lemma shows the boundedness of the \(W_R \) process with proper weighing function. It follows from, for instance, a modification of Example 1.8 in Alexander (1986) or that of Lemma 3.2 in Einmahl et al. (2006).

Lemma 2. For any \(T > 0 \) and \(\eta \in [0, 1/2) \), with probability 1,

\[
\sup_{0 < x \leq T, 0 < y < \infty} \frac{|W_R(x, y)|}{x^{\eta}} < \infty \quad \text{and} \quad \sup_{0 < x < \infty, 0 < y < T} \frac{|W_R(x, y)|}{y^{\eta}} < \infty.
\]

3It is called “pseudo” estimator because the marginal distribution functions are unknown.
Next, denote \(s_n(x) = \frac{n}{k} (1 - F_1(U_1(n/k) x^{-\gamma_1})) \) for \(x > 0 \). From the regular variation condition (2), we get that \(s_n(x) \to x \) as \(n \to \infty \). The following lemma shows that when handling proper integrals, \(s_n(x) \) can be substituted by \(x \) in the limit.

Lemma 3. Suppose (2) holds. Denote \(g \) as a bounded and continuous function on \([0, S_0] \times [a, b]\) with \(0 < S_0 \leq \infty \) and \(0 \leq a < b < \infty \). Moreover, suppose there exist \(\eta_1 > \gamma_1 \) and \(m > 0 \) such that

\[
\sup_{0 < x \leq S_0, \ a \leq y \leq b} \frac{|g(x, y)|}{x^{\eta_1}} \leq m.
\]

If \(S_0 < +\infty \), we further require that \(0 < S < S_0 \). Then,

\[
\lim_{n \to \infty} \sup_{a \leq y \leq b} \left| \int_0^S g(s_n(x), y) - g(x, y) dx^{-\gamma_1} \right| = 0. \tag{11}
\]

Furthermore, suppose \(|g(x_1, y) - g(x_2, y)| \leq |x_1 - x_2| \) holds for all \(0 \leq x_1, x_2 < S_0 \) and \(a \leq y \leq b \). Under conditions (b) and (d), we have that

\[
\lim_{n \to \infty} \sup_{a \leq y \leq b} \sqrt{k} \left| \int_0^S g(s_n(x), y) - g(x, y) dx^{-\gamma_1} \right| = 0. \tag{12}
\]

Proof of Lemma 3 We prove (11) and (12) for \(S = S_0 = \infty \). The proof for \(0 < S < S_0 < +\infty \) is similar but simpler. For any \(0 < \varepsilon < 1 \), denote \(T(\varepsilon) = \varepsilon^{-1/\gamma_1} \). It follows from (2) and Proposition B.1.10 of de Haan and Ferreira (2006) that

\[
\lim_{n \to \infty} \sup_{0 < x \leq 1} \frac{s_n(x)}{x^{\gamma_1/2}} = 1,
\]

and

\[
\lim_{n \to \infty} \sup_{0 < x \leq T(\varepsilon)} |s_n(x) - x| = 0.
\]

With \(\delta(\varepsilon) = \varepsilon^{1/(\eta_1 - \gamma_1)} \), we have that

\[
\sup_{a \leq y \leq b} \left| \int_0^\infty (g(s_n(x), y) - g(x, y)) dx^{-\gamma_1} \right| \\
\leq \sup_{a \leq y \leq b} \left(\left| \int_0^\delta (g(s_n(x), y) - g(x, y)) dx^{-\gamma_1} \right| + \left| \int_\delta^T (g(s_n(x), y) - g(x, y)) dx^{-\gamma_1} \right| \\
+ \left| \int_T^\infty (g(s_n(x), y) - g(x, y)) dx^{-\gamma_1} \right| \right) \\
\leq -m \int_0^\delta \left(x^{\gamma_1/2} + x^{\gamma_1} \right) dx^{-\gamma_1} + \delta^{-\gamma_1} \sup_{\delta \leq x \leq T(\varepsilon)} \sup_{a \leq y \leq b} |g(s_n(x), y) - g(x, y)| + 2\varepsilon \sup_{0 < x < \infty} |g(x, y)|
\]

15
\[
\leq c_1 \varepsilon^{1/2} + \delta^{-\gamma_1} \sup_{\delta \leq x \leq T} \sup_{a \leq y \leq b} |g(s_n(x), y) - g(x, y)| + 2 \varepsilon \sup_{0 \leq x \leq \infty} \sup_{a \leq y \leq b} |g(x, y)|,
\]

where \(c_1 \) is a finite constant. Hence, \((11)\) follows from the uniform continuity of \(g \) on \([\delta, T] \times [a, b]\) and the boundedness of \(g \) on \([0, +\infty) \times [a, b]\).

Next we prove \((12)\). Denote \(\tilde{T}_n = |A_1(n/k)|^{1/\rho_1} \). By the Lipschitz property of \(g \),

\[
\sup_{a \leq y \leq b} \left| \int_0^{\tilde{T}_n} (g(s_n(x), y) - g(x, y)) \, dx^{-\gamma_1} \right|
\leq \int_0^{\tilde{T}_n} |s_n(x) - x| \, dx^{-\gamma_1} + 2 \sup_{0 \leq x \leq \infty} \sup_{a \leq y \leq b} |g(x, y)| \tilde{T}_n^{-\gamma_1}.
\]

It is thus necessary to prove that both terms in the right hand side of \((13)\) are \(o(1/\sqrt{k}) \). For the second term, condition \((d)\) implies that \(\frac{a}{2(1-a)} < \frac{\gamma_1 \rho_1}{\rho_1-1} \). Thus for any \(\varepsilon_0 \in \left(0, \frac{\gamma_1 \rho_1}{\rho_1-1} - \frac{a}{2(1-a)}\right) \), as \(n \to \infty \), we have that

\[
\sqrt{k} \left(\frac{n}{k} \right)^{\frac{\gamma_1 \rho_1}{\rho_1-1} + \varepsilon_0} = O\left(n^{\frac{\gamma_1 \rho_1}{\rho_1-1} + \varepsilon_0 - \alpha(\frac{\gamma_1 \rho_1}{\rho_1-1} - \frac{a}{2(1-a)})} \right) \to 0,
\]

which leads to

\[
\sqrt{k} \tilde{T}_n^{-\gamma_1} = \sqrt{k} |A_1(n/k)|^{1/\rho_1} \to 0. \tag{14}
\]

For the first term, notice that for \(x \in (0, \tilde{T}_n) \) and \(0 < \varepsilon_1 < \frac{\gamma_1}{\rho_1-1} \), when \(n \) is large enough,

\[
U_1(n/k)x^{-\gamma_1} \geq U_1(n/k)\tilde{T}_n^{-\gamma_1} = U_1(n/k) |A_1(n/k)|^{\frac{\gamma_1}{\rho_1-1}} \geq \left(\frac{n}{k} \right)^{\frac{\gamma_1}{\rho_1-1} - \varepsilon_1},
\]

which implies that \(U_1(n/k)x^{-\gamma_1} \to +\infty \) as \(n \to \infty \). Hence we can apply Theorems 2.3.9 and B.3.10 in de Haan and Ferreira (2006) to condition \((b)\) and obtain that for sufficiently large \(n \),

\[
\left| \frac{s_n(x) - x}{A_1(n/k)} - x \frac{x^{-\rho_1} - 1}{\gamma_1 \rho_1} \right| \leq x^{1-\rho_1} \max(x^{\varepsilon_0}, x^{-\varepsilon_0}).
\]

Thus, we get that

\[
\sqrt{k} \int_0^{\tilde{T}_n} |s_n(x) - x| \, dx^{-\gamma_1}
\leq \sqrt{k} |A_1(n/k)| \int_0^{\tilde{T}_n} \left(x \left| \frac{x^{-\rho_1} - 1}{\gamma_1 \rho_1} \right| + x^{1-\rho_1} \max(x^{\varepsilon_0}, x^{-\varepsilon_0}) \right) \, dx^{-\gamma_1}
\leq c_2 \sqrt{k} |A_1(n/k)| \tilde{T}_n^{1-\rho_1-\gamma_1+\varepsilon_0}
\]

\[
= c_2 \sqrt{k} |A_1(n/k)|^{\frac{\gamma_1 - \varepsilon_0}{\rho_1}} \leq c_3 \sqrt{k} \left(\frac{n}{k} \right)^{\frac{\gamma_1 \rho_1}{\rho_1-1} + \varepsilon_0}, \tag{15}
\]

\[
16
\]
with c_2 and c_3 some positive constants. Again, by condition (d), as $n \to \infty$, $c_3 \sqrt{k} \left(\frac{n}{k} \right)^{\frac{\gamma_1-1}{2}} \to 0$. Hence, (12) is proved by combining (13), (14) and (15).

With those auxiliary lemmas, we obtain the asymptotic behavior of $\tilde{\theta}_{n/k}$ as follows.

Proposition 2. Suppose (1) and (2) hold with $0 < \gamma_1 < 1/2$. Then,

$$\sup_{1/2 \leq y \leq 2} \left| \frac{\sqrt{k}}{U_1(n/k)} \left(\frac{\tilde{\theta}_{n/k}}{\tilde{\theta}_{n/k}} - \frac{\tilde{\theta}_{n/k}}{\tilde{\theta}_{n/k}} \right) + \frac{1}{y} \int_0^\infty W_R(s,y)ds^{-\gamma_1} \right| \to 0.$$

Proof of Proposition 2 Recall $s_n(x) = \frac{n}{k} (1 - F_1(U_1(n/k)x^{-\gamma_1}))$, $x > 0$. Similar to (10),

$$y\tilde{\theta}_{n/k} = \int_0^\infty \frac{n}{k} P(X > s, Y > U_2(n/(ky)))ds$$

$$= \int_0^\infty \frac{n}{k} P(1 - F_1(X) < 1 - F_1(s), 1 - F_2(Y) < ky/n)ds$$

$$= \int_0^\infty R_n \left(\frac{n}{k} (1 - F_1(s)), y \right) ds$$

$$= -U_1(n/k) \int_0^\infty R_n(s_n(x), y)dx^{-\gamma_1}.$$

(16)

Similarly, $y\tilde{\theta}_{n/k} = -U_1(n/k) \int_0^\infty T_n(s_n(x), y)dx^{-\gamma_1}$. For any $T > 0$, we have

$$\sup_{1/2 \leq y \leq 2} \left| \frac{\sqrt{k}}{U_1(n/k)} \left(y\tilde{\theta}_{n/k} - y\tilde{\theta}_{n/k} \right) + \int_0^\infty W_R(x,y)dx^{-\gamma_1} \right|$$

$$= \sup_{1/2 \leq y \leq 2} \left| \int_T^\infty W_R(x,y)dx^{-\gamma_1} - \int_0^\infty \sqrt{k} (T_n(s_n(x), y) - R_n(s_n(x), y)) dx^{-\gamma_1} \right|$$

$$\leq \sup_{1/2 \leq y \leq 2} \left| \int_T^\infty W_R(x,y)dx^{-\gamma_1} \right| + \sup_{1/2 \leq y \leq 2} \left| \int_0^\infty \sqrt{k} (T_n(s_n(x), y) - R_n(s_n(x), y)) dx^{-\gamma_1} \right|$$

$$+ \sup_{1/2 \leq y \leq 2} \left| \int_0^\infty \sqrt{k} (T_n(s_n(x), y) - R_n(s_n(x), y)) - W_R(x,y)dx^{-\gamma_1} \right|$$

$$=: I_1(T) + I_{2,n}(T) + I_{3,n}(T).$$

It suffices to prove that for any $\varepsilon > 0$, there exists $T_0 = T_0(\varepsilon)$ such that

$$P(I_1(T_0) > \varepsilon) < \varepsilon,$$

and $n_0 = n_0(T_0)$ such that for any $n > n_0$,

$$P(I_{2,n}(T_0) > \varepsilon) < \varepsilon;$$

$$P(I_{3,n}(T_0) > \varepsilon) < \varepsilon.$$

(17)
Firstly, for the term $I_1(T)$, by Lemma 2 with $\eta = 0$, there exists $T_1 = T_1(\varepsilon)$ such that

$$P \left(\sup_{0 < x < \infty, 0 \leq y \leq 2} |W_R(x, y)| > T_1^{\gamma_1} \varepsilon \right) < \varepsilon.$$

Then for any $T > T_1$,

$$P(I_1(T) > \varepsilon) \leq P \left(\sup_{x > T, 1/2 \leq y \leq 2} |W_R(x, y)| > T_1^{\gamma_1} \varepsilon \right) < \varepsilon.$$

Thus (17) holds provided that $T_0 > T_1$.

Next we deal with the term $I_2; n(T)$. Let \tilde{P} be the probability measure defined by $(1 - F_1(X), 1 - F_2(Y))$ and \tilde{P}_n the empirical probability measure defined by $(1 - F_1(X_i), 1 - F_2(Y_i))_{1 \leq i \leq n}$. We have

$$P(I_2; n(T) > \varepsilon) = P \left(\sup_{1/2 \leq y \leq 2} \int_T^\infty \sqrt{k} (T_n(s_n(x), y) - R_n(s_n(x), y)) \, dx^{\gamma_1} > \varepsilon \right)$$

$$\leq P \left(\sup_{x > T, 1/2 \leq y \leq 2} \sqrt{k} (T_n(s_n(x), y) - R_n(s_n(x), y)) > \varepsilon T^{\gamma_1} \right)$$

$$= P \left(\sup_{x > T, 1/2 \leq y \leq 2} \sqrt{n} (\tilde{P}_n - \tilde{P}) \left\{ \left(0, \frac{k s_n(x)}{n} \right) \times \left(0, \frac{k y}{n} \right) \right\} > \varepsilon T^{\gamma_1} \sqrt{k}/n \right)$$

$$=: p_2.$$

Define $S_n = \{(0, 1) \times (0, 2k/n)\}$, then $\tilde{P}(S_n) = 2k/n$. Now by Inequality 2.5 in Einmahl (1987), there exists a constant c and a function ψ with $\lim_{t \to 0} \psi(t) = 1$, such that

$$p_2 \leq c \exp \left(- \frac{(\varepsilon T^{\gamma_1} \sqrt{k}/n)^2}{4P(S_n)} \right) \psi \left(\frac{\varepsilon T^{\gamma_1} \sqrt{k}/n}{\sqrt{n} P(S_n)} \right)$$

$$= c \exp \left(- \frac{\varepsilon^2 T^{\gamma_1}}{8} \psi \left(\frac{\varepsilon T^{\gamma_1/2}}{2\sqrt{k}} \right) \right).$$

Choose $T_2(\varepsilon)$ such that $c \exp \left(- \frac{\varepsilon^2 T^{\gamma_1}}{16} \right) \leq \varepsilon$. Then, for any $T > T_2$, $c \exp \left(- \frac{\varepsilon^2 T^{\gamma_1}}{16} \right) \leq \varepsilon$. Furthermore, we can choose $n_1 = n_1(T)$ such that for $n > n_1$, $\psi \left(\frac{\varepsilon T^{\gamma_1/2}}{2\sqrt{k}} \right) > 1/2$. Therefore, for $T > T_2(\varepsilon)$ and $n > n_1(T)$, we have $p_2 < \varepsilon$, which leads to (18) provided that $T_0 > T_2$ and $n_0 > n_1$.

Lastly, we deal with $I_3; n(T)$. We have that

$$P(I_3; n(T) > \varepsilon)$$
there exists

Proof of Proposition 3
Observe that \(\lim \) applying (20) and (11) with

Moreover, \(n \) Notice that by (11), as \(n \to \infty \), \(\int_0^T (s_n(x))^\beta dx \gamma_n \to \frac{21}{\gamma_0 - \gamma_1} T^{\gamma_0 - \gamma_1} \). Together with Lemma 1, there exists \(n_3(T) > n_2(T) \) such that for \(n > n_3(T) \), \(p_{31} < \epsilon/2 \).

Then, we consider \(p_{32} \). Applying Lemma 2, with the aforementioned \(\eta_0 \in (\gamma_1, 1/2) \), there exists \(\lambda_0 = \lambda(\eta_0, \epsilon) \) such that

Moreover, \(W_R(x, y) \) is continuous on \((0, \infty) \times [1/2, 2] \), see Corollary 1.11 in Adler (1990). Hence applying (20) and (11) with \(g = W_R \), \(S = T \) and \(S_0 = T + 1 \), we have that there exists a \(n_4 = n_4(T) \) such that for \(n > n_4 \), \(p_{32} < \epsilon/2 \). Thus, (19) holds for any \(T_0 \) and \(n_0 > \max(n_3(T_0), n_4(T_0)) \).

To summarize, choose \(T_0 = T_0(\epsilon) > \max(T_1, T_2) \), and define \(n_0(T_0) = \max_{1 \leq j \leq 4} n_j(T_0) \). We get that for the chosen \(T_0 \) and any \(n > n_0 \), the three inequalities (17)–(19) hold, which completes the proof of the proposition.

Next, we proceed with the second step: establishing the asymptotic normality of \(\hat{\theta}_{\pi} \).

Proposition 3. Under the condition of Theorem 1, we have

\[
\sqrt{k} \left(\frac{\hat{\theta}_{\pi}}{\hat{\theta}_{\pi}} - 1 \right) \overset{d}{\to} \Theta.
\]

Proof of Proposition 3 Observe that \(\lim_{n \to \infty} \frac{\theta_{\pi}}{U_1(n/k)} = \int_0^\infty R(s^{-1/\gamma_1}, 1)ds \). Therefore it is sufficient to show that

\[
\frac{\sqrt{E}}{U_1(n/k)} \left(\hat{\theta}_{\pi} - \theta_{\pi} \right) \overset{d}{\to} \Theta \int_0^\infty R(s^{-1/\gamma_1}, 1)ds.
\]
Recall \(e_n = \frac{n}{k} (1 - F_2(Y_{n-k,n})) \). Hence, with probability 1, \(\hat{\theta}_k = e_n \hat{\theta}_{k+n/n} \), we thus have that

\[
\sqrt{k} \frac{U_1(n/k)}{U_1(n/k)} \left(e_n \hat{\theta}_{k+n/n} - \theta_k \right) - \Theta \int_0^\infty R(s^{-1/\gamma_1}, 1) ds
\]

\[
= \left(\sqrt{k} \frac{U_1(n/k)}{U_1(n/k)} \left(e_n \hat{\theta}_{k+n/n} - e_n \theta_{k+n/n} \right) + \int_0^\infty W_R(s, 1) ds^{-\gamma_1} \right)
\]

\[
+ \left(\sqrt{k} \frac{U_1(n/k)}{U_1(n/k)} \left(e_n \theta_{k+n/n} - \theta_k \right) - W_R(\infty, 1)(\gamma_1 - 1) \int_0^\infty R(s^{-1/\gamma_1}, 1) ds \right)
\]

\[= J_1 + J_2. \]

We prove that both \(J_1 \) and \(J_2 \) converge to zero in probability as \(n \to \infty \).

Firstly, we deal with \(J_1 \). By Lemma 1 and \(T_n(\infty, e_n) = 1 \), we get that

\[
\sqrt{k}(e_n - 1) \xrightarrow{P} -W_R(\infty, 1), \tag{21}
\]

which implies that

\[
\lim_{n \to \infty} P(|e_n - 1| > k^{-1/4}) = 0.
\]

Hence, with probability tending to 1,

\[
|J_1| \leq \sup_{|y-1| < k^{-1/4}} \left| \frac{\sqrt{k}}{U_1(n/k)} \left(y \hat{\theta}_{k+n/n} - y \theta_{k+n/n} \right) + \int_0^\infty W_R(s, y) ds^{-\gamma_1} \right|
\]

\[
+ \sup_{|y-1| < k^{-1/4}} \left| \int_0^\infty W_R(s, y) - W_R(s, 1) ds^{-\gamma_1} \right|.
\]

The first part converges to zero in probability by Proposition 2. For the second part, notice that for any \(\varepsilon > 0, 0 < \delta < 1 \) and \(\eta \in (\gamma_1, 1/2) \),

\[
P \left(\sup_{|y-1| < k^{-1/4}} \left| \int_0^\infty W_R(s, y) - W_R(s, 1) ds^{-\gamma_1} \right| > \varepsilon \right)
\]

\[
\leq P \left(\sup_{|y-1| < k^{-1/4}} \left| \int_0^\delta W_R(s, y) - W_R(s, 1) ds^{-\gamma_1} \right| > \varepsilon/2 \right)
\]

\[
+ P \left(\sup_{|y-1| < k^{-1/4}} \left| \int_\delta^\infty W_R(s, y) - W_R(s, 1) ds^{-\gamma_1} \right| > \varepsilon/2 \right)
\]

\[
\leq P \left(\sup_{0 < s \leq 1, 1/2 \leq y \leq 2} \left| \frac{W_R(s, y)}{s^\eta} \right| > \frac{\varepsilon(\eta - \gamma_1)}{4 \gamma_1 (\delta^{-\gamma_1} - \eta)} \right)
\]

\[
+ P \left(\sup_{s > 0, |y-1| < k^{-1/4}} \left| W_R(s, y) - W_R(s, 1) \right| > \varepsilon/2 \right).
\]

20
\[=: p_{11} + p_{12}. \]

For any fixed \(\varepsilon \), Lemma 2 ensures that there exists a positive \(\delta(\varepsilon) \) such that for all \(\delta < \delta(\varepsilon) \), we have that \(p_{11} < \varepsilon \). Then, for any fixed \(\delta \), there must exists an positive integer \(n(\delta) \) such that for \(n > n(\delta) \) we can achieve that \(p_{12} < \varepsilon \), because we have that as \(n \to \infty \),

\[
\sup_{s > 0, |y - 1| < k^{-1/4}} |W_R(s, y) - W_R(s, 1)| \xrightarrow{d} 0,
\]

see Corollary 1.11 in Adler (1990). Hence we proved that \(J_1 \xrightarrow{P} 0 \) as \(n \to \infty \).

Next we deal with \(J_2 \). We first prove a non-stochastic limit relation: as \(n \to \infty \),

\[
\sup_{1/2 \leq y \leq 2} \sqrt{k} \left| \int_0^\infty R_n(s_n(x), y) - R(x, y)dx^{-\gamma_1} \right| \to 0. \tag{22}
\]

Condition (a) implies that as \(n \to \infty \),

\[
\sup_{0 < x < x_{\infty}} \frac{|R_n(x, y) - R(x, y)|}{x^{\beta} \wedge 1} = O \left(\left(\frac{n}{k} \right)^{\tau} \right).
\]

Hence, as \(n \to \infty \),

\[
\sup_{1/2 \leq y \leq 2} \sqrt{k} \left| \int_0^\infty R_n(s_n(x), y) - R(s_n(x), y)dx^{-\gamma_1} \right|
\leq \sqrt{k} \sup_{0 < x < x_{\infty}} \frac{|R_n(x, y) - R(x, y)|}{x^{\beta} \wedge 1} \left| \int_0^\infty (s_n(x))^{\beta} \wedge 1dx^{-\gamma_1} \right|
= O \left(\sqrt{k} \left(\frac{n}{k} \right)^{\tau} \right) \left(- \int_0^{1/2} (s_n(x))^{\beta} dx^{-\gamma_1} - \int_{1/2}^\infty 1dx^{-\gamma_1} \right) \to 0.
\]

The last step follows from the following two facts. Firstly, condition (d) ensures that \(k = O(n^\alpha) \) with \(\alpha < \frac{2r}{2r - 1} \). Secondly, we have that

\[
\lim_{n \to \infty} - \int_0^{1/2} (s_n(x))^{\beta} dx^{-\gamma_1} = - \int_0^{1/2} x^{\beta} dx^{-\gamma_1} < \infty,
\]

which is a consequence of (11).

To complete the proof of relation (22), it is still necessary to show that as \(n \to \infty \),

\[
\sup_{1/2 \leq y \leq 2} \sqrt{k} \left| \int_0^\infty R(s_n(x), y) - R(x, y)dx^{-\gamma_1} \right| \to 0.
\]

This is achieved by applying (12) to the \(R \) function which satisfies the Lipschitz condition: \(|R(x_1, y) - R(x_2, y)| \leq |x_1 - x_2| \), for \(x_1, x_2, y \geq 0 \). Hence, we proved the relation (22).
Combining (16) and (22), we obtain that

\[
\frac{\theta_n}{U_1(n/k)} = - \int_0^\infty R(s_n(x), 1) dx^{-\gamma_1} = - \int_0^\infty R(x, 1) dx^{-\gamma_1} + o\left(\frac{1}{\sqrt{k}}\right),
\]

and

\[
\frac{e_n \theta_{k^n}}{U_1(n/k)} = - \int_0^\infty R_n(s_n(x), e_n) dx^{-\gamma_1} = - \int_0^\infty R(x, e_n) dx^{-\gamma_1} + o_P\left(\frac{1}{\sqrt{k}}\right).
\]

From the homogeneity of the \(R\) function, for \(y > 0\), we have that

\[
\int_0^\infty R(x, y) dx^{-\gamma_1} = y^{1-\gamma_1} \int_0^\infty R(x, 1) dx^{-\gamma_1}.
\]

Hence, we get that

\[
e_n \theta_{k^n/k} = e_n^{1-\gamma_1} \frac{\theta_n}{n} + o_P\left(\frac{U_1(n/k)}{\sqrt{k}}\right).
\]

By applying (21), Proposition 1 and the Cramér’s delta method, we get that, as \(n \to \infty\),

\[
\frac{\sqrt{k}}{U_1(n/k)} \left(e_n \theta_{k^n} - \theta_n \right) = \sqrt{k} (e_n^{1-\gamma_1} - 1) \frac{\theta_n}{U_1(n/k)} + o_P(1)
\]

\[
P \to (\gamma_1 - 1) W_R(\infty, 1) \int_0^\infty R(s^{-1/\gamma_1}, 1) ds.
\]

which implies that to \(J_2 \not\to 0\). The proposition is thus proved.

Finally, we can combine the asymptotic relations on \(\hat{\theta}_n\) and \(\hat{\gamma}_1\) to obtain the proof of Theorem 1.

Proof of Theorem 1 Write

\[
\frac{\hat{\theta}_p}{\hat{\theta}_n} = \frac{\hat{\theta}_k}{\hat{\theta}_n} \times \frac{\hat{\theta}_k}{\hat{\theta}_n} \times \frac{\hat{\theta}_k}{\hat{\theta}_n} =: L_1 \times L_2 \times L_3.
\]

We deal with the three factors separately.

Firstly, handling \(L_1\) uses the asymptotic normality of the Hill estimator. Under conditions (b) and (c), we have that, as \(n \to \infty\),

\[
\sqrt{k_1} (\hat{\gamma}_1 - \gamma_1) \frac{P}{\Gamma};
\]

see, e.g., Example 5.1.5 in de Haan and Ferreira (2006). As in the proof of Theorem 4.3.8 of de Haan and Ferreira (2006), this leads to

\[
\frac{\sqrt{k_1}}{\log d_n} (L_1 - 1) \not\to 0.
\]

Secondly, the asymptotic behavior of the factor \(L_2\) is given by Proposition 3.
Lastly, for L_3, by condition (b) and Theorem 2.3.9 in de Haan and Ferreira (2006), we have that
\[
\frac{U_1(1/p)}{A_1(n/k)d_n^{1/k}} - 1 \sim \frac{1}{\theta_1}.
\]
Together with the fact that as $n \to \infty$, $\sqrt{k} |A_1(n/k)| \to 0$ (implied by condition (d)), we get that
\[
\frac{U_1(1/p)}{U_1(n/k)d_n^{1/k}} - 1 = o \left(\frac{1}{\sqrt{k}} \right)
\] (26)
Following the same reasoning of (23) for $p \leq k/n$, we have
\[
\frac{\theta p}{U_1(1/p)} - \int_0^\infty R(s^{-1/n}, 1) ds = o \left(\frac{1}{\sqrt{k}} \right).
\]
Combining this with (26), we have
\[
L_3 = \frac{\theta p}{U_1(n/k)} \times \frac{U_1(n/k)d_n^{1/k}}{U_1(1/p)} = 1 + o \left(\frac{1}{\sqrt{k}} \right).
\] (27)
Combining the asymptotic relations (25), (27) and Proposition 3, we get that
\[
\frac{\hat{\theta}_p}{\theta_p} = 1 + o \left(\frac{1}{\sqrt{k}} \right).
\]
The covariance matrix of (Θ, Γ) follows from the straightforward calculation. \qed

Proof of Theorem 2 Write $\theta_p^+ := E(X^+ | Y > U_2(1/p))$. Then,
\[
\frac{\hat{\theta}_p}{\theta_p} = \frac{\hat{\theta}_p}{\theta_p} \times \frac{\theta_p^+}{\theta_p}.
\]
Hence, it suffices to prove that $\frac{\hat{\theta}_p}{\theta_p}$ follows the asymptotic normality stated in Theorem 1 and $\frac{\theta_p^+}{\theta_p}$.

We first show that (X^+, Y) satisfies conditions (a) and (b) of Section 2.1. Let \tilde{F}_1 be the distribution function of X^+ and $\tilde{U}_1 = \left(\frac{1}{1-F_1} \right)^\uparrow$. It is obvious that $U_1(t) = \tilde{U}_1(t)$, for $t > \frac{1}{1-F_1(0)}$. Hence X^+ satisfies condition (b).

Before checking condition (a) for (X^+, Y), we prove that, as $t \to \infty$,
\[
tP(X < 0, 1 - F_2(Y) < 1/t) = O(t^*).
\] (28)
Observe that condition (a) implies that
\[
\sup_{1/2 \leq y \leq 2} |y - R(t, y)| = O(t^\gamma).
\]

Because of the homogeneity of \(R \), we have \(1 - R(ct, 1) = O(t^\gamma) \) for any \(c \in (0, \infty) \). Hence, (28) is proved by
\[
t P(X < 0, 1 - F_2(Y) < 1/t) = 1 - t P(X > 0, 1 - F_2(Y) < 1/t)
= 1 - t P(1 - F_1(X) < 1 - F_1(0), 1 - F_2(Y) < 1/t)
\leq 1 - R(t(1 - F_1(0)), 1) + |t P(1 - F_1(X) < 1 - F_1(0), 1 - F_2(Y) < 1/t) - R(t(1 - F_1(0)), 1)|
= O(t^\gamma).
\]

Now we show that \((X^+, Y)\) satisfies condition (a), that is, as \(t \to \infty \),
\[
\sup_{0 < x < \infty} \frac{\sup_{1/2 \leq y \leq 2} |t P(1 - \tilde{F}_1(X^+) < x/t, 1 - F_2(Y) < y/t) - R(x, y)|}{x^\beta \wedge 1} = O(t^\gamma). \tag{30}
\]

Firstly, observe that for \(0 < x \leq t(1 - F_1(0)) \),
\[\{1 - \tilde{F}_1(X^+) < x/t\} = \{1 - F_1(X^+) < x/t\} = \{1 - F_1(X) < x/t\} .\]
Hence, the uniform convergence (in (30)) on \((0, t(1 - F_1(0))] \times [1/2, 2] \) follows from the fact that \((X, Y)\) satisfies condition (a). Secondly, for \(x > t(1 - F_1(0)) \), we have \(1 - \tilde{F}_1(X^+) < x/t \). Therefore,
\[
\sup_{t(1 - F_1(0)) < x < \infty} \frac{\sup_{1/2 \leq y \leq 2} |t P(1 - \tilde{F}_1(X^+) < x/t, 1 - F_2(Y) < y/t) - R(x, y)|}{x^\beta \wedge 1}
= \sup_{t(1 - F_1(0)) < x < \infty} (y - R(x, y))
\leq \sup_{1/2 \leq y \leq 2} (y - R(t(1 - F_1(0)), y)) = O(t^\gamma) ,
\]
where the last relation follows from (29). This completes the verification of (30). As a result, Theorem 1 applies to \(\partial p \). Next we show that \(\partial p = 1 + o \left(\frac{1}{\sqrt{t}} \right) \). By Proposition 1, \(\frac{\partial p}{\mu(1/p)} \to \int_0^\infty R \left(x^{-1/\gamma_1}, 1 \right) dx \). By H"older’s inequality, condition (e) and (28),
\[
- E(X^- | Y > U_2(1/p)) = - \frac{1}{p} E(X^- I(X < 0, Y > U_2(1/p)))
\]
\[
\frac{1}{p} \left(E \left| X^{-1} \right|^{\gamma_1} \right) (P(X < 0, Y > U_2(1/p)))^{1-\gamma_1} = O(p^{-1+(1-\tau)(1-\gamma_1)}).
\]

Condition (b) can be written as:

\[
\lim_{t \to \infty} \frac{U_1(tx)(tx)^{-\gamma_1} - U_1(t)t^{-\gamma_1}}{A_1(t)U_1(t)t^{-\gamma_1}} = \frac{x^{\rho_1} - 1}{\rho_1}.
\]

It follows from Theorem B.2.2 in de Haan and Ferreira (2006) that \(\frac{1}{U_1(1/p)} = O(p^{\gamma_1}) \), as \(p \downarrow 0 \).

Hence by condition (f),

\[
\frac{\theta_p}{\theta_p^+} = 1 + \frac{E(X^{-1} | Y > U_2(1/p))}{\theta_p^+} = 1 + O \left(\frac{p^{-1+(1-\tau)(1-\gamma_1)}}{U_1(1/p)} \right) = 1 + O \left(p^{-\gamma(1-\gamma_1)} \right) = 1 + o \left(\frac{1}{\sqrt{k}} \right).
\]

\[\square\]

References

